簡易檢索 / 詳目顯示

研究生: 林裕傑
論文名稱: 參數調整機制於多目標演化式演算法之效能剖析
A numerical study on parameter control mechanisms in MOEA/D-AMS
指導教授: 蔣宗哲
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 71
中文關鍵詞: 多目標最佳化問題演化式演算法差分演化參數調整機制
論文種類: 學術論文
相關次數: 點閱:249下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現實生活中,我們常常需要解決一些具有多個目標需要考量的問題,並且這些目標通常是互相衝突的,這些問題稱為多目標問題,而多目標最佳化問題的目標便是找出能最佳化這些目標的解集合。演化式演算法 (evolutionary algorithm) 是求解這類問題的常見演算法,其概念為利用族群演化的方式來尋找最佳解集合。MOEA/D 為其中一種知名的演算法,利用將多目標問題拆成單目標來求解的作法可以獲得良好的結果,而 MOEA/D-AMS 與 MOEA/D-APC 便是以該演算法為基礎所改良,其中 MOEA/D-APC 參考了差分演化 (differential evolution) 產生子代的作法,該演算法擁有兩個控制參數 F 與 CR,這兩個參數值是影響子代品質的關鍵,因此 MOEA/D-APC 加入了讓參數隨演化過程調整的機制,經過實驗證明效能有所改善,但仍然在少部分問題上輸給其他的DE演算法。
    本論文挑出八個具有不同參數調整機制的DE演算法,利用 MOEA/D-AMS為主體分別結合這八種演算法與 MOEA/D-APC 的參數調整機制,藉由對17個測試問題進行實驗與分析,討論不同調整機制對效能的影響,並將主要目標放在探討 MOEA/D-APC 的弱項及改進方案上。

    附圖目錄.........................................................V 附表目錄......................................................VII 第一章 緒論.................................................1 1.1 多目標最佳化問題.................................1 1.2 研究範疇.................................................2 第二章 文獻探討.........................................4 2.1 MOEA/D 與DE.......................................4 2.2 參數調整機制分類................................8 2.2.1 數值的分布方式...............................8 2.2.2 族群參數個數...................................8 2.2.3 參考資訊的範圍...............................8 2.3 具參數調整機制之演化式演算法.......10 2.3.1 連續數值-個別參數-沒有資訊.........10 2.3.1.1 NSDE...........................................10 2.3.2 連續數值-個別參數-個體資訊........11 2.3.2.1 jDE...............................................11 2.3.2.2 SspDE..........................................12 2.3.3 連續數值-個別參數-群體資訊.........13 2.3.3.1 SaDE.............................................13 2.3.3.2 jDE-2.............................................14 2.3.3.3 SaNSDE.........................................15 2.3.3.4 JADE.............................................16 2.3.3.5 JADE2...........................................17 2.3.3.6 SaJADE..........................................18 2.3.4 連續數值-個別參數-親代資訊.........19 2.3.4.1 Self-adaptive DE(SDE)..............19 2.3.5 連續數值-單一參數-群體資訊..........20 2.3.5.1 ADEA.............................................20 第三章 方法與步驟..........................................22 3.1 MOEA/D-AMS...........................................22 3.1.1 收斂評估機制.....................................22 3.1.2 密集度評估機制.................................22 3.1.3 交配池選擇機制.................................23 3.1.4 MOEA/D-AMS基本流程.....................23 3.2 MOEA/D-APC............................................23 3.2.1 演化過程的參數調整..........................24 3.2.2 參數值選擇..........................................25 3.2.3 MOEA/D-APC基本流程.......................26 3.3 各演算法之參數調整機制比較................26 第四章 實驗設計...............................................30 4.1 測試問題....................................................30 4.2 效能指標....................................................35 4.3 參數設定....................................................36 4.3.1 基礎參數設定(MOEAD-AMS).............36 4.3.2 各演算法之調整機制所需參數設定...36 4.4 效能評比.....................................................38 4.4.1 UF5問題效能探討................................44 4.4.2 F2問題效能探討...................................51 4.4.3 F7問題效能探討...................................54 4.4.4 F8問題效能探討...................................56 4.4.5 UF7問題效能探討................................58 第五章 結論與未來發展....................................67 參考文獻.............................................................68

    C. N.Chen,“A Multiobjective Evolutionary Algorithm with Adaptive Parameter Control,”M. S. thesis, Department of Computer Science and Information, National Taiwan Normal University, Taipei, Taiwan, 2011.

    Y. P. Lai,“Multiobjective Optimization Using MOEA/D with a New Mating Selection Mechanism,” M. S. thesis, Department of Computer Science and Information, National Taiwan Normal University, Taipei, Taiwan, 2010.

    Q. Zhang, H. Li,“MOEA/D: A Multiobjective Evolutionary AlgorithmBased on Decomposition”IEEE Transactions on Evolutionary Computation, Vol. 11, No. 6, 2007.

    K.Price, R. M.Storn, J. A.Lampinen,Differential Evolution: A Practical Approach to Global Optimization,(Natural Computing Series)Springer–Verlag New York, Inc., Secaucus, NJ,2005.

    Z. Yang, X. Yao, J. He, “Making a Difference to Differential Evolution,” Advance in Metaheuristics for Hard Optimization, Vol. 1, pp. 397– 414, 2008.

    J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, “Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems,” IEEE Transactions on Evolutionary Computation, Vol. 10, No. 6, pp. 646–657, 2006.

    Q. Pan, P.N. Suganthan, L. Wang, L. Gao, R. Mallipeddi, “A Differential Evolution Algorithm with Self-adapting Strategy and Control Parameters,” Computers & Operations Research, Vol. 38, No. 1, pp. 394–408, 2011.

    A.K. Qin, P.N. Suganthan, “Self-adaptive Differential Evolution Algorithm for Numerical Optimization,” IEEE Congress on Evolutionary Computation, Vol. 2, pp. 1785–1791, 2005.

    J. Brest, V. Zumer, M.S. Maucec, “Self-Adaptive Differential Evolution Algorithm in Constrained Real-Parameter Optimization,” IEEE Congress on Evolutionary Computation, Vol. 1, pp. 215–222, 2006.

    Z. Yang, K. Tang, X. Yao, “Self-adaptive Differential Evolution with Neighborhood Search,” IEEE Congress on Evolutionary Computation, Vol. 1, pp. 1110–1116, 2008.

    J. Zhang, A. C. Sanderson, “JADE: Adaptive Differential Evolution with Optional External Archive,” IEEE Transactions on Evolutionary Computation, Vol. 13, No. 5, pp. 945–958, 2009.

    J.Zhang, A.C. Sanderson, “Self-adaptive Multi-objective Differential Evolution with Direction Information Provided by Archived Inferior Solutions,”IEEE Congress on Evolutionary Computation, Vol. 1, pp. 2801–2810, 2008.

    W. Gong, Z. Cai, C. X. Ling, H. Li “Enhanced Differential Evolution With Adaptive Strategies for Numerical Optimization,” IEEE Transactions on Systems, man, and Cybernetics, Part B, Vol. 41, No. 2, pp. 397–413, 2011.

    M. G.H. Omran, A. Salman, A. P. Engelbrecht, “Self-adaptive Differential Evolution,” Computational Intelligence and Security, Vol. 3801, pp.192–199, 2005.

    W. Qian, A. Li, “Adaptive Differential Evolution Algorithm for Multiobjective Optimization Problems,” Applied Mathematics and Computation, Vol. 201, No. 1–2, pp. 431–440, 2008.
    [
    K.Deb,S. Agrawal,A. Pratap,T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,”IEEE Transactionson Evolutionary Computation, Vol. 6,No.2, pp. 182–197, 2002.

    J. Liu, J. Lampinen, “A Fuzzy Adaptive Differential Evolution Algorithm,” Soft Computing, Vol. 9, No. 6, pp. 448–462, 2005.

    H.Li, Q. Zhang,“Multiobjective Optimization Problems with Complicated Pareto Sets, MOEA/D and NSGA-II,”IEEE Transactionson Evolutionary Computation,Vol. 13,No.2, pp.284–302,2009.

    Q.Zhang, A.Zhou,S. Zhao,P. N. Suganthan, W. Liu,S. Tiwari,“Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition,”The School of Computer Science and Electronic Engineering, University of Essex (Technical Report CES-487), 2008.

    下載圖示
    QR CODE