簡易檢索 / 詳目顯示

研究生: 陳亮竹
Chen, Liang-Chu
論文名稱: 福山試驗林三種附生植物對幹流水水質影響之探討
The effect of three epiphyte species on stemflow chemistry at Fushan Experimental Forest
指導教授: 林登秋
Lin, Teng-Chiu
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 68
中文關鍵詞: 附生植物幹流水膨大基質營養
英文關鍵詞: epiphyte, large substrate, nutrient, stemflow
DOI URL: https://doi.org/10.6345/NTNU202202262
論文種類: 學術論文
相關次數: 點閱:50下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 幹流水是雨水進入到森林生態系的形式之一,在森林的水文生態和生物地質化學上扮演著相當重要的角色。降雨多的潮濕森林常可見大量附生植物,附生植物因無法利用土壤中的水與營養故一般認為與非附生植物相比較常遭遇水及營養的逆壓。前人研究提出附生植物透過影響著幹流水的滲流、營養吸收和釋放,從而改變幹流水中營養離子濃度。台灣巢蕨基質富含有機質,幹流水流經這類附生植物,可能會淋洗溶出營養物質,但部分營養元素也會被吸收利用,至今對於有大型基質的附生植物對於幹流水水質的影響卻鮮少有研究關注。本研究於福山試驗林比較幹流水通過有大型基質的台灣巢蕨、無大型基質的書帶蕨與長葉羊耳蒜等三種附生植物前後水質的差異。實驗結果顯示幹流水通過台灣巢蕨後離子濃度和總量、水量大多減少,且pH值降低。幹流水通過其它兩種附生植物多數離子濃度亦下降,但濃度降幅低於巢蕨,反之離子總量因水量大幅下降導致下降幅度遠大於巢蕨。由研究結果推斷,和台灣巢蕨共生的附生植物可能面臨較低的水逆壓但較高的營養逆壓,即這些附生植物要在水和營養中做取捨。

    Stemflow is one of the main types of precipitation input to the forest ecosystem. Stemflow plays an important role on forest ecohydrology and biogeochemistry. Many moist forests are characterized with abundant epiphytes that have no direct access of water and nutrients from the soils and as such often considered to experience water and/or nutrient stress. Some studies indicate that epiphyte affect stemflow percolation and may absorb nutrients from or leach nutrients to stemflow through which affects stemflow nutrient content. Asplenium nidus (nest fern) has a large substrate that rich in nutrient. Stemflow through this large substrate may release or uptake nutrient. However, few studies examined the effects of epiphytes that is have a large substrate on stemflow chemistry. In Fushan Experimental Forest (FEF) we use three kinds of epiphytes nest fern(large substrate), Haplopteris flexuosa Fee, Liparis nakaharai Hayata to compare the effects to stemflow chemical. The results show that the stemflow ion flux, concentration, water flux and pH are lower after passing through the nest fern. The decrease of ion concentration through small epiphytes was lower than nest fern. But the flux that nest fern decrease is fewer than small epiphytes. Epiphytes that form symbiotic relationship with nest fern may have lower water stress but higher nutrient stress. That means epiphytes have trade-off between water and nutrient.

    目次 I 圖表目次 III 摘要 1 研究背景及目的 3 實驗方法 7 一、樣地介紹 7 二、研究材料 9 三、幹流水收集 11 四、幹流水分析 14 五、資料分析 15 結果 16 一、幹流水平均水量、主要陰陽離子通量 16 二、幹流水離子濃度 18 三、物種內離子濃度差異 20 討論 24 一、幹流水水量 24 二、幹流水化學 25 三、台灣巢蕨 29 結論 32 未來研究建議 33 參考文獻 34 附錄 41

    李沛軒、林謙佑、邱文良、黃曜謀、林則桐,2013。福山植物園蕨類物候。林業研究資訊,第二十卷:45-48。
    郭城孟,2001。蕨類圖鑑1。台北市:遠流出版有限公司。
    楊正澤、陳明義、江英煜,2001。關刀溪森林生態系著生植物基質中無脊椎動物群聚之生物多樣性。台灣昆蟲期刊,第二十一期:99-117。
    黃增泉,1996。臺灣植物誌。行政院國家科學委員會,第二版第二卷:947。
    顏睦歆,2007。台灣山蘇花基質氮源與無脊椎動物群聚之研究。國立台灣大學昆蟲學研究所碩士論文。
    嚴中佑,2004。關刀溪森林生態系著生植物基質之節肢動物群聚結構。國立中興大學昆蟲學系碩士論文。
    Aboal, J.R., Morales, D., Hernandez, M., Jimenez, M.S., 1999. The measurement and modeling of the variation of stemflow in a laurel forest in Tenerife, Canary Islands. Journal of Hydrology, 221: 161-175.
    Andrade, J.L., Nobe, P.S., 1997. Microhabitats and water relations of epiphytic cacti and ferns in a lowland neotropical forest. Biotropica, 29: 261-270.
    Awasthi, O.P., Sharma, E., Palni, L.M.S., 1995. Stemflow: a source of nutrients in some naturally growing epiphytic orchids of the Sikkim Himalaya. Annals of Botany, 75: 5-11.
    Benner, J.W., Vitousek, P.M., 2007. Development of a diverse epiphyte community in response to phosphorus fertilization. Ecology Letters, 10: 628-636.
    Benzing, D.H., 1990. Vascular epiphytes: general biology and related biota. Cambridge University Press, Cambridge.
    Chang, S.C., Matzner, E., 2000. The effect of beech stemflow on spatial patterns of soil solution chemistry and seepage fluxes in a mixed beech/oak stand. Hydrological Processes, 14: 135-144.
    Crockford, R.H., Richardson, D.P., 2000. Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrological Processes, 14: 2903-2920.
    Crozier, C.R., Boerner, R.E.J., 1984. Correlations of understory herb distribution patterns with microhabitats under different tree species in a mixed mesophytic forest. Oecologia, 62: 337-343.
    Draaijers, G.P., Erisman, J.W., Van Leeuwen, N.F.M., Romer, F.G., Te Winkel, B.H., Veltkamp, A.C., Vermeulen, A.T., Wyers, G.P., 1997. The impact of canopy exchange on differences observed between atmospheric deposition and throughfall fluxes. Atmospheric Environment, 31: 387-397.
    Elser, J.J., Bracken, M.E.S., Cleland, E.E., Gruner, D.S., Harpole, W.S., Ngai, J.T., Seabloom, E.W., Shurin, J.B., Smith, J.E., 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10: 1135-1142.
    Frank, J.H., Curtis, G.A., 1981. Bionomics of the bromeliad-inhabiting mosquito Wyeomyia vanduzeei and its nursery plant Tillandsia utriculata. Florida Entomology, 64: 491-506.
    Fayle, T.M., Chung, A.Y., Dumbrell, A.J., Eggleton, P., Foster, W.A., 2009. The effect of rain forest canopy architecture on the distribution of epiphytic ferns (Asplenium spp.) in Sabah, Malaysia. Biotropica, 41: 676-681
    Gosz, J.R. 1980. Nutrient budget studies for forests along an elevational gradient in New Mexico. Ecology, 61: 515-521.
    Helvey, J.D., Patric, J.H., 1965. Canopy and litter interception of rainfall by hardwoods in the eastern United States. Water Resources Research,1: 193-206.
    Herwitz, S.R., 1988. Buttresses of tropical rainforest trees influence hillslope processs. Earth Surface Processes and Landforms, 13: 563-567.
    Holwerda, F., Bruijnzeel, L.A., Barradas, V.L., Cervantes, J., 2013. The water and energy exchange of a shaded coffee plantation in the lower montane cloud forest zone of central Veracruz, Mexico. Agricultural and Forest Meteorology, 173: 1-13.
    Hsu, C.C., Horng, F.W., Kuo, C.M., 2002. Epiphyte biomass and nutrient capital of a moist subtropical forest in north-eastern Taiwan. Journal of Tropical Ecology, 18: 659-670.
    Huang, G.Z., Lin, T.C., 2016. Response of two epiphyte species to nitrogen and phosphorus fertilization at a humid subtropical rainforest in northeastern Taiwan. Taiwan Journal of Forest Science, 31: 293-304.
    Jian, P.Y., Hu, F.S., Wang, C.P., Chiang, J.M., Lin, T.C., 2013. Ecological facilitation between two epiphytes through drought mitigation in a subtropical rainforest. Plos One, 8: e64599.
    Kenneth, L.C., Nalini, M.N., Henry, L.G., 1998. Growth, Net production, litter decomposition, and net nitrogen accumulation by epiphytic bryophytes in a tropical montane forest. Biotropica, 30: 12-23.
    Kramer, P.J., Kozlowski, T.T., 1979. Physiology of woody plants. Academic Press, New York.
    Levia, D.F., Frost, E.E. 2003. A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. Journal of Hydrology, 274: 1-29.
    Likens, G.E., Bormann, F.H., Pierce, R.W., Eaton, J.S., Johnson, N.M., 1977. Biogeochemistry of a forested ecosystem. 146. Springer-Verlag, New York.
    Likens, G.E., Driscoll, C.T., Buso, D.C., 1996. Long-term effects of acid rain: response and recovery of a forest ecosystem. Science, 272: 244-246.
    Lin, K.C., Hamburg, S.P., Tang, S.L., Hsia, Y.J., Lin, T.C., 2003. Typhoon effects on litterfall in a subtropical forest. Canadian Journal of Forest Research, 33: 1-9.
    Lin, T.C., Horng, F.W., King, H.B., Hsia, Y.J., 1998. Typhoon disturbance and stand level damage patterns at a subtropical forest in Taiwan. Biotropica, 30: 238-250.
    Lin, T.C., Hamburg, S.P., King, H.B., and Hsia, Y.J., 2000. Throughfall patterns in a subtropical rain forest of northeastern Taiwan. Journal of Environmental Quality, 29: 1186-1193.
    Lin, T.C., Hamburg, S.P., Hsia, Y.J., King, H.B., Wang, L.J., Lin, K.C., 2001. Base cation leaching from the canopy of a subtropical rainforest in northeastern Taiwan. Journal of Forest Research, 31: 1156-1163.
    Lin, T.C., Hamburg, S.P., Lin, K.C., Wang, L.J., Chang, C.T., Hsia, Y.J., Vadeboncoeur, M.A., Mabry McMullen, C.M., Liu, C.P., 2011. Typhoon disturbance and forest dynamics: lessons from a northwest pacific subtropical forest. Ecosystems, 14: 127-143.
    Lu, S.Y., Tang, K.J., Ku, H.Y., Huang, H.H. 2000. Climatic conditions of forested lands of Taiwan Forestry Reasearch Institute. Taiwan Journal of Forest Science, 15: 429-440.
    Menzel, F., Kitching, R.L., Boulter, S.L., 2004. Host specificity or habitat structure? The epicortical beetle assemblages in an Australian subtropical rainforest. Eruopean Journal of Entomology, 101: 251-259.
    Mitchell, R.J., Sutton, M.A., Truscott, A.M., Leith, I.D., Cape, J.N., Pitcairn, C.E.R., Van Dijk, N., 2004. Growth and tissue nitrogen of epiphytic Atlantic bryophytes: effects of increased and decreased atmospheric N deposition. Functional Ecology, 18: 322-329.
    Muoghalu, J.I., Oakhumen, A., 2000. Nutrient content of incident rainfall, throughfall and stemflow in a Nigerian secondary lowland forest. Applied Vegetation Science, 3: 181-188.
    Nadkarni, N.M., 1984. Epiphyte biomass and nutrient capital of a neotropical elfin forest. Biotropcia, 16: 249-256.
    Paulian, R., 1951. Caractères des sols suspendus des forêts tropicales. Annals of Applied Biology, 27: 279-280.
    Parker, G.G., 1983. Throughfall and stemflow in the forest nutrient cycle. Advances In Ecological Research, 13: 57-133.
    Perry, D.A., 1994. Forest Ecosystems. The Johns Hopkins University Press. Baltimore and London.
    Reiners, W.A., Olson, R.K., 1984. Effects of canopy components on throughfall chemistry: an experimental analysis. Oecologia, 63: 320-330.
    Rosier, C.L., Levia, D.F., Van Stan, J.T., Aufdekampe, A., Kan, J., 2016. Seasonal dynamics of the soil microbial community structure within the proximal area of tree boles: possible influence of stemflow. European Journal of Soil Biology, 73: 108-118.
    Spencer, S.A., Van Meerveld, H.J., 2016. Double funneling in a mature coastal British Columbia forest: spatial patterns of stemflow after infiltration. Hydrological Processes, 30: 4185-4201.
    Strigel, G., Ruhiyaat, D., Prayitno, D., Sarmina, S., 1994. Nutrient input by rainfall into secondary forests in east Kalimantan, Indonesia. Journal of Tropical Ecology, 10: 285-288.
    Turner, E.C., Foster, W.A., 2006. Assessing the influence of bird’s nest ferns (Asplenium spp.) on the local microclimate across a range of habitat disturbances in Sabah, Malaysia. Selbyana, 27: 195-200.
    Turner, E.C., Snaddon, J.L., Johnson, H.R., Foster, W.A., 2007. The impact of bird’s nest ferns on stemflow nutrient concentration in a primary rain forest, Sabah, Malaysia. Journal of Tropical Ecology, 23: 721-724.
    Ulrich, B., Pankrath, D., 1983. Effects of gaseous air pollution on agriculture and horticulture. Butterworth Scientfic, London.
    Vance, E.D., Nadkarni, N.M., 1990. Microbial biomass and activity in canopy organic matter and the forest floor of a tropical cloud forest. Soil Biology and Biochemistry, 22: 677-684.

    下載圖示
    QR CODE