研究生: |
林育生 YU-SENG LIN |
---|---|
論文名稱: |
含銅蛋白質活性中心之擬態化合物研究—含氮硫不對稱三牙基之一價和二價銅錯合物之合成、結構及反應性探討 Synthesis, Structures, and Reactivity of Asymmetric Tridentate N/S Ligand of Copper(I) and Copper(II) Complexes—Mimics for the Active Site of Copper Containing Proteins |
指導教授: |
李位仁
Lee, Way-Zen 蘇展政 Su, Chan-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 含銅蛋白質活性中心 、含氮硫不對稱三牙基 |
英文關鍵詞: | The Active Site of Copper Containing Proteins, Asymmetric Tridentate N/S Ligand |
論文種類: | 學術論文 |
相關次數: | 點閱:179 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了模擬藍銅蛋白以及胜肽甘胺酸α-羥化氧化酶(Peptidylglycine
α-hydroxylating monooxygenase,簡稱PHM)的活性中心,我們合成出一
個含氮硫不對稱之三牙配位基(MBMAS),並成功地合成出一系列具有
MBMAS 二價和一價銅錯合物:Cu(MBMAS)Cl2 (1)、Cu(MBMAS)(NO3)2
(2) 、[Cu(MBMAS)2](CF3SO3)2 (3) 、[Cu4(MBMAS)4](CF3SO3)4 (4) 和Cu(MBMAS)Cl (8)。再將錯合物1 和2 分別與不同的硫醇化合物反應以模擬氧化態的藍銅蛋白活性中心,發現二價銅錯合物皆會被還原成無色
的一價銅錯合物。因此我們嘗試模擬還原態的藍銅蛋白活性中心,將錯
合物4 分別與去質子化的硫醇化合物2-(trimethylsilyl)benzenethiolate 與2-(benzoylamino)benzenethiolate 反應,由產物之核磁共振氫譜推測,有[Cu(MBMAS)((CH3)3SiC6H4S)]和[Cu(MBMAS)(C13H10NOS)]的生成。若將四核結構的錯合物4 與PPh3、tBuNC、CO 等小分子反應可形成並鑑定出一系列單核一價銅錯合物:[Cu(MBMAS)(PPh3)](CF3SO3) (5)、[Cu(MBMAS)(CNBut)](CF3SO3) (6)和[Cu(MBMAS)CO](CF3SO3) (7),顯示錯合物4 具有良好的反應性。若氧氣與錯合物4 在甲醇下反應以紫外-可見光光譜偵測其產物,可發現兩組電荷轉移吸收峰411 nm(ε = 25471)及617 nm (ε = 3940)類似於Cu(II)-superoxo 錯合物的吸收光譜。
In order to mimic the active site of blue copper protein and
peptidylglycine α-hydroxylating monooxygenase (PHM), we synthesize an asymmetric N2S(thioether) ligand, 1-methyl benzimidazolyl-2-methyl anilinoethyl sulfide (MBMAS). A series of Cu(II) and Cu(I) complexes of MBMAS, Cu(MBMAS)Cl2 (1), Cu(MBMAS)(NO3)2 (2), [Cu-(MBMAS)2](CF3SO3)2 (3), [Cu4(MBMAS)4](CF3SO3)4 (4), and Cu(MBMAS)Cl (8), have been successfully synthesized and fully characterized. Complexes 1 and 2 were futher reacted with a series of thiolate ligands to mimic the active site of oxidized form of blue copper protein. However, the Cu(II) complexes were reduced to form colorless Cu(I) complexes. Therefore, we aimed to model the active site of the reduced form of blue copper protein by reacting complex 4 with 2-(trimethylsilyl)benzenethiolate and 2-(benzoylamino)benzenethiolate, respectively. 1H-NMR spectra of the isolated products have suggested the formation of [Cu(MBMAS)((CH3)3SiC6H4S)] and [Cu(MBMAS)(C13H10NOS)]. The tetranuclear complex 4 exhibits excellent reactivities toward small molecules, such as PPh3, tBuNC, and CO. A series of mononuclear Cu(I) complexes, [Cu(MBMAS)(PPh3)](CF3SO3) (5),[Cu(MBMAS)(CNBut)](CF3SO3) (6), and [Cu(MBMAS)CO](CF3SO3)(7), were formed and spectroscopically and structurally characterized.
Reaction of dioxygen with complex 4 in methanol solution monitored by UV-vis spectroscopy exhibited two charge transfer absorption bands at 411 nm (ε = 25471) and 617 nm (ε = 3940). The UV-vis spectrum of the resulting species is similar to that of copper(II) superoxo complex.
1. Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004, 104, 1013.
2. Nar, H.; Messerschmidt, A.; Huber, R.; van de Kamp, M.; Canters, G. W. J. Mol. Biol.
1991, 221, 765.
3. Kitajima, N.; Fujisawa, K.; Tanaka, M. Adv. Inorg. Chem. 1992, 39, 1.
4. Ramshaw, J. A. M. Nature. 1978, 272, 319.
5. Lippard, S. J. Principle Of Bioinorganic chemisrtry; University Science Books:Mill
Vally, 1994, p 86 and p 237-242
6.Thompson, J. S.; Marks, T. J.; Ibers, J. A. Proc. Natl. Acad. Sci. USA, 1977, 74, 3114.
7. Marks, T. J.; Ibers, J. A.; Thompson, J. S. J. Am. Chem. Soc. 1979, 101, 4180.
8. Kitajima, N; Moro-oka, Y.; Fujisawa, K. J. Am. Chem. Soc. 1990, 112, 3210.
9. Kitajima, N.; Fujisawa, K.; Tanaka, M.; Moro-oka, Y. J. Am. Chem. Soc, 1992; 114,
9232.
10. Qiu, D.; Kilpatrick, L.; Kitajima, N.; Spiro, T. G. J. Am. Chem. Soc. 1994, 116,
2585.
11. Tolman, W. B.; Holland, P. L. J. Am. Chem. Soc. 1999, 121, 7270.
12. Holland, P. L.; Tolman, W. B. J. Am. Chem. Soc. 2000, 122, 6331.
13. L. Mario Amzel, Science. 1997, 278, 1301.
14. L. Mario Amzel, Science. 2004, 304, 865.
15. L. Mario Amzel, Science. 1997, 278, 1304.
16. Kazunari Yoshizawa, Inorg. Chem. 2006, 35, 3034.
17. Kazunari Yoshizawa, Inorg. Chem. 2006, 35, 3035.
18. T. Daniel P. Stack, Chemical Reviews, 2004, 104, 1021.
19. Jrg Sundermeyer, Angew. Chem. Int. Ed, 2006, 45, 3868.
20. Kenneth D. Karlin, J. Am. Chem. Soc. 1994, 116, 2585.
21. Purcell, K. F.; Kotz, J. C., Inorg Chem, Saunders, W. B. Philadelphia, 1977.
22. Chang, T. K. ; Rodrigues, C. G.; Kiserf, C. N.; Lew, A. Y. C.; Germanas, J. P.;
Richards, J. H.; Iverson, S. A. PNAS , 1991, 88, 1325.
23. Musker, W. K.; Huaasim, M. S. Inorg. Chem. Nucl. Chem. 1967, 3, 271.
24. Hathway, B. J.; Billing, D. E. Coord. Chem. Rev. 1970, 5, 143.
25. Csoregh, I.; Kierkegaard, P.; Norrestam, R. Acta Crystallogr. 1975, B31, 314.
26. Lewin, A. H.; Michl, R. J. Chem. Commun. 1971, 1400.
27. Sorrell, T. N.; Jameson, D. L. J. Am. Chem. Soc. 1983, 105, 6013.
28. Sanyal, I.; Karlin, K. D.; Strange, R. W.; Blackburn, N. J. J. Am. Chem. Soc. 1993,
115, 11259.
29. Sorrell, T. N.; Malachowski, M. R. Inorg. Chem. 1983, 22, 1883.
30. Spencer, D. J. E.; Aboelella, N. W.; Reynold, A. M.; Holland, P. L.; Tolman, W. B. J.
Am. Chem. Soc. 2002, 124, 2108.
31. Clainche, L. L.; Giorgi, M.; Reinaud, O. Eur. J. Inorg. Chem. 2000, 1931.
32. Schilstra, M. J.; Birker, P. J. M. W. L.; Verschoor, G. C.; Reedijk, J. Inorg. Chem.
1982, 21, 2637.
33. Gagne, R. R.; Allison, J. L.; Gall, R. S.; Koval, C. A. J. Am. Chem. 1977, 22, 7170.
34. Casella, L.; Gullotti, M.; Suardi, E. J. Chem. Soc. Dalton Trans. 1990, 2843.
35. Casella, L.; Gullotti, M.; Pintar, A.; Pinciroli, F.; Viganò, R. J. Chem. Soc. Dalton
Trans. 1989, 1161.
36. Milner, E. S.; jun.; Snyder, S.; Joullié, M. M. J. Chem. Soc. 1964, 4151.
37. Block, E.; Eswarakrishnan, V.; Gernon, M.; Ofori-Okai, G.; Saha, C.; Tang, K.;
Zubieta, J. J. Am. Chem. Soc. 1989, 111, 658.
38. Murray, S. G..; Hartley, F. R. Chem. Rev. 1981, 81, 365.
39. Dagdigian, J. V.; McKee, V.; Reed, C. A. Inorg. Chem. 1982, 21, 1332.
40. Gagné, R. R.; Allison, J. L.; Gall, R. S.; Koval, C. A. J. Am. Chem. Soc. 1977, 22,
7170.
41. Addison, A. W.; Burke, P. J.; Henrick, K.; Rao, T. N.; Sinnic, E. Inorg. Chem. 1983,
22, 3645.
42. Miskowski, V. M.; Schugar, H. J.; Thich, J. A.; Solomon, R. J. Am. Che. Soc. 1976,
98, 8344.
43.Wilde, R. E.; Sirnivasan, T. K. J. Inorg. Nucl. Chem. 1974, 36, 323.
44. Meek, D. W.; Ehrhardt, S. A. Inorg. Chem. 1965, 4, 584.
45. Dagdigian, J. V.; Reed, C. A. Inorg. Chem. 1979, 18, 2623.
46. Bosnich, B.; Downes, J. M.; Whelan, J. Inorg. Chem. 1981, 20, 1081.
47. Yam, V. W. W.; Lam, C. H.; Fung, K. M.; Cheung, K. K. Inorg. Chem. 2001, 40,
3435.
48. Dance, I. G. Polyhedron 1986, 2, 1031.
49. Healy, P. C.; Bott, R. C.; Sagatys, D. S. Chem. Commun. 1998, 2403.
50. Dance, I. G. ; Guerney, P. J.; Rae, A. D.; Scudder, M. L. Inorg. Chem. 1983, 22, 2883.
51. Nakamura, A.; Okamura, T.; Ueyama, N.; Ainscough, E. W.; Brodie, A. M.; Waters,
J.M. J. Chem. Soc. Chem. Commun., 1993, 1658.
52. Vittal, J. J.; Lai, G. X.; Deivaraj, T. C. Inorg. Chem, 2000, 39, 1028.
53. Gunnoe, T. B.; Delp, S. A.; Munro-Leighton, C.; Goj, L. A. ; Ramírez, M. A.;
Petersen, J. L.; Boyle, P. Inorg. Chem. 2007, 46, 2365.
54. Kenneth M. Nicholas, Inorg. Chem, 2007, 47, 2317.
55. Taki, M.; Teramae, S.; Nagatomo, S.; Tachi, Y.; Kitagawa, T.; Itoh, S.; Fukuzumi, S. J.
Am. Chem. Soc. 2002, 124, 6367.
56. Kenneth M. Nicholas, Inorg. Chem, 2007, 47, 2318.
57. (a) Zhang, C. X.; Liang, H. -C.; Kim, E.-i.; Shearer, J.; Helton, M. E.; Kaderli, S.;
Incarvito, C. D.; Zuberbűhler, A. D.; Rheingold, A. L.; Karlin, K. D. J. Am. Chem.
Soc. 2003, 125, 634-635. (b) Zhang, C. X.; Kaderli, S.; Costas, M.; Kim, E.-i.;
Neuhold, Y.-M.; Karlin, K. D.; Zuberbűhler, A. D. Inorg. Chem. 2003, 42, 1807-1824.
60. Holland, P. L.; Tolman, W. B. J. Am. Chem. Soc. 2000, 122, 6331.
61. Solomon, E. I; Dooley, D. M; Wang, R. H.; Gray, H. B.; Cerdonoi, M.; Mongo, F.;
Romani, G. L. J. Am. Chem. Soc. 1976, 98, 1029.