簡易檢索 / 詳目顯示

研究生: 陳弘奇
論文名稱: 以強化突變機制之基因演算法求解多目標彈性零工式工廠排程問題
A Genetic Algorithm with Enhanced Mutation forMultiobjective Flexible Job Shop Scheduling Problems
指導教授: 蔣宗哲
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 38
中文關鍵詞: 基因演算法多目標柏拉圖最佳化彈性零工式工廠排程問題
論文種類: 學術論文
相關次數: 點閱:459下載:29
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 如何有效分配資源以及提高生產效率、降低生產成本,是製造業一直以來想要達到的目標,這就是為何十幾年來生產排程問題可以如此的熱門。排程問題大部分都屬於組合最佳化問題,零工式工廠排程問題(Job-shop Scheduling Problem, JSP)便是其一。由於此類問題的複雜度很高,通常難以求得最佳解。彈性零工式工廠排程問題(Flexible Job-shop Scheduling Problem, FJSP)則為零工式工廠排程問題的延伸,主要透過分配製程的作業機台(路由問題),以及變換製程在機台上的順序(排序問題)來最小化最大完工時間(makespan)、機台總工作量(total workload)和最大機台工作量(maximum workload)。
    本論文所提出的演算法主體為基因演算法(Genetic Algorithm, GA),搭配交換關鍵製程以及重新插入關鍵製程來做突變,並且強化插入關鍵製程的方式。而為了求得在多個目標上的最佳化,本論文採用柏拉圖分級法(Pareto ranking)當作選擇機制,目的在於找到柏拉圖最佳解(Pareto optimal solutions)。
    實驗的問題為 BR data 的十個測試問題。本論文提出的演算法在非凌越解(non-dominated solutions)個數較多的問題中能大幅度更新目前的已知非凌越解。

    附圖目錄 v 附表目錄 vi 第一章 緒論 1 1.1 研究背景與動機 1 1.2 多目標彈性零工式工廠排程問題(MOFJSP) 1 1.3 多目標最佳化問題 3 1.4 基因演算法 5 1.5 研究方法與貢獻 8 1.6 全文架構 8 第二章 文獻探討 9 2.1 路由問題 9 2.2 排序問題 12 第三章 強化突變機制之基因演算法 14 3.1 染色體編碼 15 3.2 染色體解碼 16 3.3 初始化族群 17 3.4 適應值計算與選擇機制 19 3.5 交配及突變 20 3.6 刪除重複解 23 3.7 強化突變機制 24 3.8 突變機制統整 28 第四章 實驗數據與效能評比 29 4.1 測試問題 29 4.2 參數設定與實驗環境 29 4.3 比較對象 30 4.4 效能指標 31 4.5 效能比較 32 第五章 結論與未來展望 34 參考文獻 36

    Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search. Annals of Operations Research, 41, 157–183.
    Chiang, T.C., & Lin, H.J. (2011). Flexible job shop scheduling using a multiobjective memetic algorithm. Lecture Notes in Artificial Intelligence (Proc. of International Conference on Intelligent Computing), 6839, (pp. 49–56).
    Chiang, T.C., & Lin, H.J. (2013). A simple and effective evolutionary algorithm for multiobjective flexible job shop scheduling. International Journal of Production Economics, 141(1), (pp. 87–98).
    Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6, 182–197.
    Giffler, B., & Thomspon, G.L. (1960). Algorithms for solving production-scheduling problems. Operations Research, 8, 487–503.
    Goldberg, D.E. (1989). Genetic algorithm in search, optimization and machine learning. Reading, MA: Addison-Wesley.
    Horn, J., & Nafpliotis, N. (1993). Multiobjective optimization using the niched Pareto genetic algorithm. University Illinois at Urbana-Champain, Urbana, IL, IlliGAL Report 93005.
    Kacem, I., Hammadi, S., & Borne, P. (2002). Approach by localization and multi-objective evolutionary optimization for flexible job-shop scheduling problem. IEEE Transactions on Systems, Man, and Cybernetics Part C, 32, 1–13.
    Li, H., & Zhang, Q. (2009). Multiobjective optimization problems with complicated Pareto sets MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Compu- tation, 13(2), 284–302.
    Li, J.Q., Pan, Q.K., & Liang, Y.C. (2010). An effective hybrid tabu search algorithm for multi-objective flexible job-shop scheduling problems. Computers & Industrial Engineering, 59, 647–662.
    Li, J.Q., Pan, Q.K., & Chen, J. (2012). A hybrid Pareto-based local search algorithm for multi-objective flexible job shop scheduling problems. International Journal of Production Research, 50(4), 1063–1078.
    Mastrolilli, M., & Gambardella, L.M. (2000). Effective neighborhood functions for the flexible job shop problem. Journal of Scheduling, 3, 3–20.
    Nowicki, E., & Smutnicki, C. (1996). A fast taboo search algorithm for the job-shop problem. Management Science, 42, 797–813.
    Pezzella, F., Morganti, G., & Ciaschetti, G. (2008). A genetic algorithm for the flexible job-shop scheduling problem. Computers & Operations Research, 35, 3202–3212.
    Wang, X., Gao, L., Zhang, C., & Shao, X. (2010). A multi-objective genetic algorithm based on immune and entropy principle for flexible job-shop scheduling problem. International Journal of Advanced Manufacturing Technology, 51, 757–767.
    Xia, W., & Wu, Z. (2005). An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Computers & Industrial Engineering, 48, 409–425.
    Xing, L.N., Chen, Y.W., & Yang, K.W. (2009). Multi-objective flexible job shop scheduling: design and evaluation by simulation modeling. Applied Soft Computing, 9, 362–376.
    Yazdani, M., Amiri, M., & Zandieh, M. (2010). Flexible job-shop scheduling with parallel variable neighborhood search algorithm. Expert Systems with Appli- cations, 37, 678–687.
    Zitzler, E., Laumanns, M., & Thiele, L. (2002). SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglu, K.C., et al. (Eds.), Evolutionary Methods for Design, Optimization, and Control, (pp. 19–26).
    Zribi, N., Kacem, I., A. Kamel, E., & Borne, P. (2007). Assignment and Scheduling in Flexible Job-shops by Hierarchical Optimization. IEEE Transactions on System, Man, and Cybernetics Part C, 37(4), 652–661.

    下載圖示
    QR CODE