簡易檢索 / 詳目顯示

研究生: 吳柏諺
論文名稱: 以案例式推理為基礎之高速公路上危險事件預測系統
Danger Prediction by Case-Based Approach on Expressways
指導教授: 方瓊瑤
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 52
中文關鍵詞: 高速公路上危險事件預測系統
論文種類: 學術論文
相關次數: 點閱:123下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因為高速公路上的景色較為單調,容易使駕駛者產生疲勞。且車輛有最低的行車速度限制,車輛速度會比一般道路快上許多,也因為車速過快的關係會導致駕駛者的視野角度縮小,容易造成危險事件的發生。而為了減少高速公路上危險事件的發生率,本論文提出了利用連續時間內駕駛者的駕駛行為、鄰車狀況、道路狀況等行車因素來預測目前是否有危險事件會發生,並適時的警告駕駛者,以減少危險事件的發生。
    本系統讀入連續時間內駕駛者的駕駛行為、鄰車狀況、道路狀況等行車因素後,將會利用各個行車因素發生的先後順序建構出一個行車事件關係圖,此行車事件關係圖描述著本車行駛至目前為止已經發生的行車因素與這些行車因素間的相互關係,並且隨著時間的演進此行車事件關係圖會持續的增長。系統資料庫會儲存著許多已知的危險事件關係圖,在系統建構出目前的行車事件關係圖後就會將它和資料庫內的危險事件關係圖做比對,若是該行車事件關係圖跟資料庫內某個危險事件關係圖的相似程度値很高的話,意味著目前有可能會發生此危險事件,系統即會通知駕駛者以預防危險事件發生。另一方面,若是系統沒對駕駛者發出警告訊息結果卻發生了危險事件,代表資料庫中缺少該危險事件關係圖,則系統將會利用案例式推理的觀念把此行車事件關係圖給回存入資料庫,以便日後比對之用途。
    本系統目前所採用的行車資訊皆為模擬得來的,日後希望資訊的來源是由真正在高速公路駕駛的車輛產生的,以提昇系統的實用性。並期望本系統未來可以安裝在車輛上,真正達到減少車禍發生的目的。

    第一章 簡介 1 1.1序論 1 1.2文獻探討 2 第二章 系統架構 6 2.1系統目的 6 2.2系統流程 6 2.3案例式推理 12 第三章 危險事件關係圖的比對 15 3.1關係圖的權重化 15 3.2比對危險事件關係圖 19 第四章 實驗結果 28 第五章 結論與未來工作 47 5.1結論 47 5.2未來工作 47 附錄A 49 參考文獻 50

    [An96]P. E. An and C. J. Harris, “An Intelligent Driver Warning System for Vehicle Collision Avoidance,” IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, vol. 26, no. 2, pp.254-261, 1996
    [Azu00]F. Azuaje, W. Dubitzky, N. Black, and K. Adamson, “Discovering Relevance Knowledge in Data: A Growing Cell Structures Approach,” IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, vol. 30, no. 3, pp.448-460, 2000
    [Bre96] J. S. Breese and D. Heckerman, “Decision-Theoretic Case-Based Reasoning,” IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, vol. 26, no. 6, pp.838-842, 1996
    [Cer99]N. Cercone, A. An, and C. Chan, “Rule-Induction and Case-Based Reasoning : Hybrid Architectures Appear Advantageous,” IEEE Transactions on Knowledge and Data Engineering, vol. 11, no. 1, pp.166-174, 1999
    [Cha07]V. Chatzigiannakis, M. Grammatikou, and S. Papavassiliou, “Extending Driver’s Horizon Through Comprehensive Incident Detection in Vehicular Networks,” IEEE Transactions on Vehicular Technology , vol. 56, no. 6, pp.3256-3265, 2007
    [Che01]S. W. Chen, S. C. Lin, and K. E. Chang, “Attributed Concept Maps: Fuzzy Integration and Fuzzy Matching,” IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetic, vol. 31, no. 5, pp.842-852, 2001
    [Che07]H. Cheng, N. Zheng, X. Zhang, J. Qin, and H. van de Wetering, “Interactive Road Situation Analysis for Driver Assistance and Safety Warning Systems: Framework and Algorithms ,” IEEE Transactions on Intelligent Transportation Systems, vol. 8, no. 1, pp.157-167, 2007
    [Cor02]J. M. Corchado and J. Aiken, “Hybrid Artificial Intelligence Methods in Oceanographic Forecast Models,” IEEE Transactions on Systems, Man, and Cybernetics—PartC: Applications and Reviews, vol. 32, no. 4, pp.307-313, 2002
    [Cro98]A. Cross and E. R. Hancock, “Graph Matching With a Dual-Step EM Algorithm,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 11, pp.1236–1253, 1998
    [Fen01]W. G. Fenton, T. M. McGinnity, and L. Maguire, “Fault Diagnosis of Electronic Systems Using Intelligent Techniques: A Review,” IEEE Transactions on Systems, Man, and Cybernetics—PartC: Applications and Reviews, vol. 31, no. 3, pp. 269-281, 2001
    [Fen02]B. Fenton, M. McGinnity, and L. Maguire, “Fault Diagnosis of Electronic System Using Artificial Intelligence,” Instrumentation & Measurement Magazine, IEEE, vol. 5, issue 3, pp.16 - 20, 2002
    [Gol96]S. Gold and A. Rangarajan, “A Graduated Assignment Algorithm for Graph Matching,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 4, pp.377-388, 1996
    [Hu04]W. Hu, X. Xiao, D. Xie, T. Tan, and S. Maybank, “Traffic Accident Prediction Using 3-D Model-Based Vehicle Tracking,” IEEE Transactions on Vehicular Technology , vol. 53, no. 3, pp.677-694, 2004
    [Ji 04]Q. Ji, Z. Zhu, and P. Lan, “Real-Time Nonintrusive Monitoring and Prediction of Driver Fatigue,” IEEE Transactions on Vehicular Technology, vol. 53, no. 4, pp.1052-1068, 2004
    [Kum04]S. Kumarawadu, and T. T. Lee, “ Neuroadaptive Combined Lateral and Longitudinal Control of Highway Vehicles Using RBF Networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 4, pp.500-512, 2004
    [Kum05]P. Kumar, S. Ranganath, H. Weimin, and K. Sengupta, “Framework for Real-Time Behavior Interpretation From Traffic Video,” IEEE Transactions on Intelligent Transportation Systems, vol. 6, no. 1, pp.43-53, 2005
    [Kri04]R. Krishnapuram, S. Medasani, S. H. Jung, Y. S. Choi, and R. Balasubramaniam, “Content-Based Image Retrieval Based on a Fuzzy Approach,” IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 10, pp.1185-1199, 2004
    [Lin00]C. F. Lin, A. G. Ulsoy and D. J. LeBlanc, “Vehicle Dynamics and External Disturbance Estimation for Vehicle Path Prediction,” IEEE Transactions on Control Systems Technology, vol. 8, no. 3, pp.508-518, 2000
    [Liu97]Z. Q. Liu, and F. Yan, “Fuzzy Neural Network in Case-Based Diagnostic System,” IEEE Transactions on Fuzzy Systems, vol. 5, no. 2, pp.209-222, 1997
    [Mak07]C. L. Mak and H. S. L. Fan, “Development of Dual-Station Automated Expressway Incident Detection Algorithms,” IEEE Transactions on Intelligent Transportation Systems, vol. 8, no. 3, pp.480-490, 2007
    [Med01]S. Medasani, R. Krishnapuram, and Y. Choi, “Graph Matching by Relaxation of Fuzzy Assignments,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 1, pp. 173-182, 2001
    [Mia00]Y. Miao and Z. Q. Liu, “On Causal Inference in Fuzzy Cognitive Maps,” IEEE Transactions on Fuzzy Systems, vol. 8, no. 1, pp.107-119, 2000
    [Mia01]Y. Miao, Z. Q. Liu, C. K. Siew, and C. Y. Miao, “Dynamical Cognitive Network — an Extension of Fuzzy Cognitive Map,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 5, pp.760-770, 2001
    [Mit05]D. Mitrovi´c, “Reliable Method for Driving Events Recognition,” IEEE Transactions on Intelligent Transportation Systems, vol. 6, no. 2, pp.198-205, 2005
    [Nie94]A. Niehaus and R. F. Stengel, “Probability-Based Decision Making for Automated Highway Driving,” IEEE Transactions on Vehicular Technology, vol. 43, no. 3, pp.626-634, 1994
    [Tan06]Z. H. Tan, “Fuzzy Metagraph and Its Combination with the Indexing Approach in Rule-Based Systems,” IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 6, pp. 829-841, 2006
    [Wu04]C. H. Wu, J. M. Ho, and D. T. Lee, “Travel-Time Prediction With Support Vector Regression,” IEEE Transactions on Intelligent Transportation Systems, vol. 5, no. 4, pp.276-281, 2004
    [Yim04]Y. U. Yim and S. Y. Oh, “Modeling of Vehicle Dynamics From Real Vehicle Measurements Using a Neural Network With Two-Stage Hybrid Learning for Accurate Long-Term Prediction,” IEEE Transactions on Vehicular Technology, vol. 53, no. 4, pp.1076-1084, 2004
    [Zha03]J. Y. Zhang, Z. Q. Liu, and S. Zhou, “Quotient FCMs—A Decomposition Theory for Fuzzy Cognitive Maps,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 5, pp.593-604, 2003
    [Zho06]S. Zhou, Z. Q. Liu, and J. Y. Zhang, “Fuzzy Causal Networks: General Model, Inference, and Convergence,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 3, pp.412-420, 2006

    下載圖示
    QR CODE