研究生: |
林榮立 |
---|---|
論文名稱: |
摩擦攪拌銲接製程參數對5083-O鋁合金接合性質之影響 Effect of Manufacture Parameters of Friction Stir Welding on the Joining Properties of 5083-O Aluminum Alloy |
指導教授: |
呂傳盛
Lu, Chuan-Sheng 程金保 Cheng, Chin-Pao |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 摩擦攪拌銲接 、5083-O鋁合金 、傾斜角 |
論文種類: | 學術論文 |
相關次數: | 點閱:477 下載:43 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
摩擦攪拌銲接是一種低變形、高品質之固態接合技術,能有效提昇鋁合金之銲接品質。本研究主要經由微觀組織分析及機械性質測試,探討摩擦攪拌銲接製程參數對5083-O鋁合金銲後接合性質之影響。製程參數包含傾斜角度、凸肩下壓深度、轉數及銲接速度,接合方式係採取對接接合。
研究結果發現使用18-4-1高速鋼材質之攪拌桿,並將攪拌桿沿進給軸方向傾斜1度,搭適當的工具轉速為550~1100 rpm、進給87~267 mm/min,能得到良好之接合效果。顯微組織觀察並未發現縮孔或裂痕,在攪拌區可觀察到細化之動態再結晶現象;微硬度測試結果則顯示在適當的銲接條件下,試片攪拌區的微硬度值最高,但與母材之硬度值並無明顯差異。而試片接合區域之熱機影響區寬度,隨著銲接速度的增加而縮減。
此外,研究結果亦顯示,在傾斜角1度及凸肩下壓深度0.15 mm之設定條件下,取摩擦攪拌銲接參數(ΘFSW) 值為4.1,即銲接速度267 mm/min搭配轉數1100 rpm進行銲接,可得到較佳之接合品質。綜合拉伸試驗結果及ΘFSW 值之分析,符合銲接品質要求之摩擦攪拌銲接參數之ΘFSW 值範圍在3.2至9.2間。
Abstract
Friction stir welding (FSW) is an emerging solid-state joining process that produces low-distortion, high-quality, low-cost welds. The welding properties of aluminum alloys may be ameliorated by the friction stir welding technology. The objective of this study is to demonstrate the feasibility of FSW for joining of 5083-O aluminum alloy by different welding conditions. To produce high integrity welds, the process variables (RPM and material of the shoulder-pin assembly, traverse speed), the tilt angle and the tool pin design of friction stir welding must be chosen carefully. Microstructures of the welds will be examined using optical microscopy (OM). The best joining and mechanical properties of friction stir welding of Al alloy were elucidated about the effect of process variables.
According to the experimental results of microstructure examination and microhardness test, the fine recrystallized grains in the stir zone and the elongated grains in the thermo-mechanical affected zone were created during friction stir welding. The hardness in the stir zone is the highest, the thermomechanically affected zone (TMAZ) and the base metal is lower. In proper welding conditions, the width of TMAZ zone decreases with increasing of the welding speed. Furthermore, the better joining quality can be achieved by the proper manufacture parameters. According to the analysis of tensile tests, the proper range of FSW parameters (ΘFSW) are from 3.1 to 9.2.
1. W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Temple- Smith, and C. J. Dawes, "Improvements relating to friction welding", World Intellectual Property Orqanization WO93/10935, (1993), Patent Application GB9125978.8, 6th December, (1991).
2. O. T. Midling, E. J. Morley, and A. Sandvik, "Friction stir welding", World Intellectual Property Orqanization WO95/26254, (1995) (EP0752926).
3. W. M. Thomas, E. D. Nicholas, J. C. Needham, P. Temple-Smith, S. W. Kallee, and C. J. Dawes, "Friction stir welding", UK Patent Application GB2306366A, (1997).
4. P. J. Ditzel, and J. C. Lippold, "Influence on the tensile properties of friction stir welding in alloys 6061-T6, 5454-H34, and 2195-T8", Materials Joining Technology, EWI Project No.012531RP, Report No.MR 019877, (1999).
5. H. G. Salem, A. P. Reynolds, and J. S. Lyons, "Microstructure and retention of superplasticity of friction stir welded superplastic 2095 sheet", Scripta Materialia, 46 (2002) pp.337-342.
6. P. J. Ditzel, and J. C. Lippold, "Microstructure evolution during friction stir welding of Aluminum alloy 6061-T6", EWI Project No.012531 RP, Report No.MR9709, (1997).
7. B. Heinz, and B. Skrotzki, "Characterization of a friction stir welded Aluminum alloy 6013", Metallurgical and Materials Transactions, 33B (2002) pp.489-498.
8. Y. S. Sato, H. Kokawa, M. Enomoto, and S. Jogan, "Microstructure evolution of 6063 Aluminum during friction stir welding", Metallurgical and Materials Transactions, 30A (1999) pp.2429-2437.
9. H. Jin, S. Saimoto, M. Ball, and P. L. Threadgill, "Characterization of microstructure and texture in friction stir welded joints of 5754 and 5182 Aluminum alloy sheets", Materials Science and Jechnology, 17 (2001) pp.1605-1614.
10. C. J. Dawes, E. J. R. Spurgin, and D. G. Staines, "Friction stir welding in Aluminum alloy 5083-increased welding speed", TWI Research Report No.7354.01/98/991.03, (1999).
11. T. Nagasawa, and M. Otsuka, "Structure and mechanical properties of friction stir weld joints of Magnesium alloy AZ31", Master thesis, Shibaura Institute of Technology, Tokyo, Japan, (2000).
12. N. Li, Tsung-Yu Pan, R. P. Cooper, D. Q. Houston, Z. Feng, and M. L. Santella, "Friction stir welding of Magnesium AM60 alloy", Magnesium Technology, TMS (The Minerals, Metals & Material Society), Retrieved from http://www.ornl.gov/~webworks/cppr/y2001/pres/120929.pdf, Dec 12, (2004).
13. A. J. Ramirez, and M. C. Juhas, "Microstructural evolution in Ti-6Al-4V friction stir welds", Material Science Forum, Vols.426-432, (2003) pp.2999-3004.
14. W. M. Thomas, P. Woollin, and K. I. Johnson, "Friction stir welding of steel; A feasibity study", Steel World, Vol.4, No.2 (1999) pp.55-59.
15. T. J. Lienert, W. L. Stellwag, B. B. Grimmett, and R.W. Warke, "Friction stir welding studies on mild steel", Welding Research, Supplement to the Welding Journal, (2003) pp.1s-9s.
16. S. W. Kallee, E. D. Nicholas, and W. M. Thomas, "Industrialisation of friction stir welding for aerospace structures", TWI, Paper Presented at Structures and Technologies-Challenges for Future Launchers Third European Conference, December 11-14, (2001).
17. From TWI: "Friction stir welding-application", Retrieved from http://www.twi.co.uk/j32k/unprotected/band_1/fswapp.html, February 12, (2003).
18. From TWI: "A flying success story for friction stir welding", Connect, No.122, January-February 2003, p1, Re´trieved May 19, (2003).
19. S. W. Kallee, J. Davenport, and E. D. Nicholas, "Railway manufacturers implement friction stir welding", AWS, Retrieved from http://www.aws.org/wj/oct02/feature.html, September 18, (2003).
20. K. J. Colligan, P. J. Konkol, J. J. Fisher, and J. R. Pickens, "Friction stir welding demonstrated for combat vehicle construction", AWS, Re´trieved September 21, (2003).
21. 劉國雄、林樹均、李勝隆、鄭晃忠和葉均尉著,工程材料科學,全華出版社,(1995) pp.498-510.
22. 啟學編輯部編譯,鋁合金資料集,啟學出版社,(1989) pp.55-58.
23. S. W. Kallee, E. D. Nicholas, and W. M. Thomas,"Friction stir welding- invention, innovations and applications", TWI, INALCO 2001, 8th Int Conf. Joints in Aluminum Munich, March 28-30, (2001).
24. "Friction welds ", Welding Handbook Volume 3, 8th ed., American Welding Society, (1991).
25. O. T. Milding, and H. G. Johansen, "Production of wide aluminum profiles by solid-state friction stir welding", International Aluminum Extrusion SeminarandExpositio, Chicago, IL May, (1996).
26. C. J. Dawes, and W. M. Thomas, "Friction stir process welds Aluminum alloys", Welding Journal 75(3), (1996) pp.41-45.
27. D. Kohn, Y. Greenberg, I. Makover, and A. Munitz, " Laser-assisted friction stir welding ", AWS, Re´trieved February 2 ,(2004).
28. J. A. Lee, R. W. Carter, and J. Ding, "Friction stir welding for Aluminum Metal Matrix Composites (MMC’s)", NSFC, Project, No.98-09, NASA/TM-1999-209876, December (1999), Alabama.
29. W. M. Thomas, E. D. Nicholas, and S. D. Smith, "Friction stir welding- tool developments", TWI, TMS Annual meeting, New Orleans, February 11-15 (2001), Louisiana, USA.
30. W. M. Thomas, and R. E. Dolby, "Friction stir welding developments", TWI, 6th International in WR, April 15-19 (2002), Georgia, USA.
31. P. Colegrove, and P. L. Threadgill, "TrivexTM tool for friction stir welding", TWI, Connect, No.124, May-June ,(2003) p.1.
32. W. M. Thomas, P. F. Fielding, P. L. Threadgill, and D. G. Staines, " Skew-stirTM variation on a theme", TWI, Connect, No.113, July- August, (2001) p.3.
33. W. M. Thomas, D. G. Staines, I. Norris, and E. Watts, "Re-stirTM-reversal stir welding", TWI, Connect, No.123, March-April ,(2003) p.3.
34. K. J. Colligan, and N. B. Wash, "Friction stir welding tool for welding variable thichness workpieces", United States Patent US 5,718,366, (1996).
35. A. V. Strombeck, and J. D. Santos, "Device for joining workpieces by friction stir welding", United States Patent US2002/0179673 A1, (2002).
36. W. M. Thomas, and P. Temple-Smith, "Improved friction welding apparatus ", UK Patent Application GB2319977A, (1998).
37. S. W. Kallee, "Knowledge based software package for friction stir welding", Proc. INALCO-7, pp.209-217, Cambridge, 16th April, (1998).
38. F. Palm, (EADS-CRC, Ottobrunn, Germany), "Wechselwirkungen zwischen materialfiuß und verbindung sbildung sowie nahteignschaften während des reibrührschweißens von Al-Legierungen ", 2nd GKSS Workshop, Jan 22-23, (2002), GKSS, Geesthacht, Germany.
39. Z. Loftus, W. A. Arbegast, and P. Hartley, " Friction stir weld tooling development for application on the 2195 Al-Cu-Li space transportation system external tank", Proc. 5th Int Conf on Trends Welding Research, Pine Mountain GA, June 1-5, (1998).
40. T. Boon, W. M. Thomas, and P. Temple-Smith, "Friction welding appapatus and method", United States Patent US 6,325,273 B1, (2001).
41. M. Peel, A. Steuwer, M. Preuss, and P. J.Withers, "Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminum AA5083 friction stir welds", Acta Materialia, 51 (2003) pp.4791-4801.
42. T. J. Lienert, W. L. J. Stellwag, and L. R. Lehman, "Comparison of heat inputs: friction stir welding vs. Arc welding", AWS, Re´trieved September 18 ,(2003).
43. 児玉克和藤谷泰,"摩擦攪拌接合裝置とろの接合方法",日本囯特許庁(JP),公開特許公報(A),Jp2004 154790 A,平成16年,(2004).
44. G. Kohn, Y. Greenberg, I. Makover, and A. Munitz, "Laser-assisted friction stir welding ",AWS,Re´trieved December 11 ,(2003).
45. P. L. Threadgill,"Friction Stir Welding–the state of the art", TWI, Research Report No.7417.01/99/1012.03, (1999).
46. A. J. Leonard, "Structure and corrosion resistance of friction stir welds in Aluminum alloys 2014A and 7075", TWI Research Report No.7400.09/99/1027.03, (1999).
47. 呂璞石和黃振賢著,金屬材料,文京出版社,(1985) pp