簡易檢索 / 詳目顯示

研究生: 洪碩靖
Sho-Ching Hong
論文名稱: 鍺表面上吸附分子動力學之理論研究︰氫的遷移、一環加成反應和振動弛緩過程
Theoretical studies of adsorbate dynamics on germanium surfaces: hydrogen migration, a cycloaddition reaction, and vibrational relaxation
指導教授: 孫英傑
Sun, Ying-Chieh
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 194
中文關鍵詞: 遷移環加成分子動力學振動弛緩過程吸附分子研究
英文關鍵詞: germanium, migration, cycloaddition, molecular dynamics, vibrational relaxation, adsorbate, Ge, diffusion
論文種類: 學術論文
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們首先利用電子結構計算探討氫原子在鍺表面上的遷移與Diels-Alder環化反應(論文第一篇)。除此之外,我們也利用分子動力學模擬計算鍺-氫延展振動模在鍺表面的弛緩延展速率(論文第二篇)。
    論文的第一個部份是關於氫原子在鍺表面的遷移計算,由電子結構計算得到氫原子在氫化鍺(111)表面沿著兩相鄰吸附位置的四條遷移路徑以及在氫化的鍺(100):2x1表面三條遷移路徑包含intradimer、interrow、intrarow遷移方向的遷移位能曲面圖以得到遷移能障。我們的結果顯示,氫原子在鍺(111)表面的遷移路徑以直接經由兩吸附位置的上空遷移最為容易,其遷移能障為36.73 kcal/mol。而其他遷移路徑的遷移能障皆較高,分別為65.28、54.64、65.28 kcal/mol。而相同的方式計算得到氫原子在氫化的矽(111)表面的遷移能障與氫原子在鍺(111)表面遷移的遷移能障結果相似,皆是直接經由兩吸附位置的上空遷移的遷移路徑具有較低的遷移能障,而其他三條遷移路徑則具較高的遷移能障。然而,氫原子在鍺(111)表面具較低遷移能障的遷移路徑,其能障值36.73 kcal/mol比氫原子在矽(111)表面相同遷移路徑低了約5.63 kcal/mol。而氫原子在鍺(100):2x1 表面 intradimer、interrow、intrarow遷移方向的遷移能障分別為24.71、59.24、43.69 kcal/mol,此結果顯示氫原子在鍺(100)表面之遷移是不等向性,此性質與在氫化的矽、鑽石(100):2x1表面不同。除此之外,根據我們結果所得到不同溫度下的擴散係數以及與矽、鑽石表面的比較也一併討論之。
    論文的第二部份則解釋鍺(100)表面的Diels-Alder環化反應,由於乙炔分子的吸附是最簡單的系統,因此先探討乙炔分子吸附在鍺(100)表面四個吸附位置的穩定性。而電子結構計算也得到1,3-丁二烯在重構鍺(100):2x1表面環化反應的[4+2]與[2+2]產物的穩定性。由於環張力的影響,[4+2]產物比[2+2]產物能量穩定約16.98 kcal/mol,此結果與矽、鑽石(100)表面的環化反應相同。除此之外,我們也將1,3-丁二烯的2,3號碳原子上的氫原子取代為推、拉電子基以檢視推、拉電子基是否會改變鍺(100):2x1表面環化反應的熱穩定性。而我們的結果則顯示,推、拉電子基並不明顯影響重構鍺(100):2x1環化反應的熱穩定性。
    在論文的第三部份,我們則利用根據Bloch-Redfield理論的古典分子動力學模擬來計算氫原子的第一振動激發態在氫化的鍺(111)表面的振動能量弛緩速率。在室溫下,鍺-氫的延展振動模在氫/鍺(111)表面的生活期為20000 ns,比矽-氫、碳-氫的延展振動模在氫/矽(111)、氫/鑽石(111)表面的生活期為1.7、0.03 ns分別大了四個、六個次方。我們也計算室溫下鍺-氘、鍺-氚在氘、氚/鍺(111)表面的生活期,其在室溫下的生活期分別為400及30 ns。除此之外,熱效應以及鍺-鍺-氫的彎曲振動頻率對生活期的影響也一併討論之,並比較此部份的結果與鑽石、矽(111)表面結果的異同。

    In the present thesis, we examined 1) hydrogen diffusion and 2) a Diels-Alder reaction on germanium surfaces using the first principle calculation. In addition, a molecular dynamics simulation was carried out to examine the vibrational relaxation of hydrogen stretching modes on germanium surface.
    For the first topic, hydrogen diffusion, potential energy curves of hydrogen migration along four paths between on-top adsorption sites on a hydrogen-covered germanium (111) surface, and the three paths including intradimer、interrow and intrarow migration paths on a hydrogen-covered germanium (100):2x1 surface, were calculated. For germanium (111) surface, the calculations gave an energy barrier height of 36.73 kcal/mol for the direct path between two on-top adsorption sites, and 65.28, 54.64, 65.28 kcal/mol for the other three paths traveling via minor adsorption sites. These results suggest that hydrogen migrate along direct paths between on-top adsorption sites on this surface. The results of the low barrier for direct path and high barriers for the other three paths are similar to the corresponding silicon (111) surface. The calculated low barrier of 36.73 kcal/mol for direct path is lower than the silicon (111) surface by 5.63 kcal/mol. For the germanium (100) surface, the calculations gave energy barrier heights of 24.71, 59.24, and 43.69 kcal/mol for the intradimer, interrow, and intrarow migration paths, respectively. These results also show that hydrogen migrations on the hydrogen-covered germanium (100) surface is anisotropic, which is different from the results on the silicon and diamond (100) surfaces. The thermal effect in diffusion constant based on the present calculated results and a comparison with silicon and diamond surfaces will be discussed.
    In the second topic of examining a Diels-Alder reaction on germanium (100) surface, the stability of four adsorption sites for acetylene molecule were examined and compared first. For the Diels-Alder reaction, the energies of the [4+2] and [2+2] cycloaddition reactions between 1,3-butadiene and the reconstructed germanium (100) surface were calculated. The [4+2] product is energetically favored over the [2+2] product by 16.98 kcal/mol due to ring strain. This result is similar to the findings for the silicon and diamond (100):2x1 surfaces. In addition, the hydrogen atoms on the 2 and 3 carbon atoms were substituted with electron-donating and electron-withdrawing groups for investigation of how the substitutions alter the stability of the Diels-Alder reactions on the germanium (100) surface. It was found that the substitutions of both electron-donating and electron-withdrawing groups did not change the stability significantly. Physical reasons for this result is discussed.
    Finally, in the last topic, we report the calculated lifetimes of the first hydrogen stretching excited state on a hydrogen-covered germanium (111) surface using molecular dynamics simulation based on the Bloch-Redfield theory. The lifetime was found to be 20000 nanoseconds at room temperature, four and six orders longer than the hydrogen stretches on a hydrogen-covered silicon and diamond (111) surfaces, respectively. In addition, the calculations for the Ge-D and Ge-T stretches gave lifetimes of 400 and 30 nanoseconds, respectively, at room temperature. The thermal effect, and an effect of the Ge-Ge-H bending frequency in the calculated lifetimes are discussed, and a comparison with silicon and diamond (111) surfaces is also discussed.

    第一篇 氫在鍺表面遷移與環化反應 1 第壹章 緒 論 1 1-1 氫原子在半導體表面上的角色 1 1-1.1 化學蒸鍍法在半導體表面上的近展 1 1-1.2 氫原子在矽(100):2x1表面上的脫附 2 1-1.3 氫原子在矽(100):2x1表面上的遷移角色 4 1-2 表面結構的簡介 4 1-2.1 氫原子吸附的鑽石、矽、鍺(111)表面 5 1-2.2 氫原子吸附的鑽石、矽、鍺(100)表面 5 1-3氫原子在鑽石、矽表面上遷移能障的文獻探討 10 1-3.1 氫原子在氫化鑽石、矽(111):1x1表面上的遷移 12 1-3.2 氫原子在氫化鑽石、矽(100):2x1表面上的遷移 12 1-3.3 第一個研究目標:氫原子在氫化鍺表面上的遷移 14 1-4 重構的鍺(100):2x1表面上的有機環化反應 16 1-4.1 乙炔在半導體表面上的吸附 17 1-4.2 1,3-丁二烯在表面上環化反應的產物 19 1-4.3 表面上環化反應的歷史發展 19 1-4.4 推、拉電子對Diels-Alder反應的影響 21 1-4.5第二個研究目標: 1,3-丁二烯在重構的鍺(100):2x1表面的環化反應 23 1-5 此篇論文第一、二部份研究的目標總結 24 第貳章 計算理論原理 26 2-1 電子結構計算方法—密度泛函理論 26 2-1.1 Hohenberg-Kohn理論 27 2-1.2 Kohn-Sham 方程式 27 2-1.3 局部的密度近似與歸納梯度近似 28 2-1.4 Hartree Fock近似法與密度泛函理論計算之準確性 29 2-2 週期的晶格系統 29 2-2.1 Bloch定理 30 2-2.2 k點 30 2-2.3平面波基底 31 2-3 擬位能 32 2-4 能量極小化的方法 34 2-4.1 梯度法 34 2-4.2 共軛梯度法 36 2-4.3 二次微分法—半牛頓法 36 2-5 此篇報告電子結構計算所使用的方法 37 第參章 選用的模型與參數 39 3-1 氫原子在矽、鍺表面上遷移的計算參數 39 3-1.1 晶格原子的數目 39 3-1.2 cutoff energy 44 3-1.3 k點 50 3-1.4 真空層與晶格的鬆弛 53 3-2 鍺(100):2x1表面有機環化反應之計算參數 55 3-2.1 晶格原子的數目 55 3-2.2 cutoff energy 57 3-3 本篇論文電子結構計算所使用計算參數總結 62 第肆章 氫在鍺表面遷移的結果與討論 64 4-1 氫化的矽、鍺(111):1x1、鍺(100):2x1表面之結構 64 4-2 氫化的鍺(111):1x1、鍺(100):2x1表面之遷移路徑 66 4-3 氫原子在鍺(111)、鍺(100)表面之遷移能障計算 71 4-3.1 氫原子在鍺、矽(111):1x1表面之遷移能障計算 72 4-3.1-Ⅰ 氫原子在鍺(111):1x1表面之遷移能障與擴散係數 72 4-3.1-Ⅱ 氫原子在矽(111):1x1表面之遷移能障與擴散係數 82 4-3.1-Ⅲ 氫原子在矽、鍺(111):1x1表面之遷移比較 87 4-3.1-Ⅳ 氫原子在各吸附位置的結構 88 4-3.2 氫原子在鍺(100)表面之遷移能障計算 92 4-3.2-Ⅰ 氫原子在鍺(100)表面之遷移能障與擴散係數 92 4-3.2-Ⅱ 氫原子在鍺、矽、鑽石(100)表面之比較 100 4-3.2-Ⅲ 氫原子在鍺(100)表面各吸附位置的結構 103 4-4 氫原子在鍺表面上的遷移與脫附比較 107 第伍章 鍺表面環化反應的結果與討論 109 5-1 重構的鍺(100):2x1結構 109 5-2 乙炔分子吸附在重構鍺(100):2x1表面上 110 5-2.1 乙炔在重構鍺(100)表面上不同吸附位置的結構 111 5-2.1-Ⅰ p橋結構與r橋結構 111 5-2.1-Ⅱ 二聚結構與終橋結構 117 5-2.2 乙炔在重構鍺(100)表面上不同吸附位置的穩定性 120 5-3 1,3-丁二烯及其衍生物在鍺(100)表面的環化反應 123 5-3.1 1,3-丁二烯與鍺(100):2x1表面反應的理論計算 124 5-3.1-Ⅰ [4+2]與[2+2]產物的結構 124 5-3.1-Ⅱ [4+2]與[2+2]產物的穩定度 129 5-3.1-Ⅲ 與重構矽、鑽石(100):2x1環化反應之比較 130 5-3.2 1,3-丁二烯衍生物與鍺(100)表面反應的理論計算 134 5-3.2-Ⅰ 推、拉電子基對[4+2]與[2+2]產物結構影響 134 5-3.2-Ⅱ 推、拉電子基對[4+2]與[2+2]產物穩定能影響 140 第陸章 結論 144 6-1 研究結論 144 6-2 未來目標 145 第柒章 參考文獻 146 第二篇 氫化鍺表面之分子動力學模擬: 振動能弛緩速率計算 155 第壹章 緒 論 155 1-1 氫原子在半導體表面振動的動力學 155 1-2 氫化的鑽石、矽表面之振動與弛緩速率實驗研究 156 1-3 氫化的鑽石、矽表面之生活期理論研究 158 1-4 第二篇論文的目標: 氫化的鍺(111)表面之生活期計算 159 第貳章 計算方法與模型 162 2-1 能量弛緩理論 162 2-2 氫化的鍺(111)表面鍺-氫延展振動模生活期計算參數 163 2-2.1 鍺-氫延展振動模生活期計算模型 164 2-2.2 鍺-氫延展振動頻率的非簡諧振動參數 164 第參章 氫化鍺(111)表面之分子動力學模擬結果與討論 167 3-1 氫化的鍺(111)表面鍺-氫之能量弛緩速率 167 3-1.1 氫化的鍺(111)表面鍺-氫之生活期 168 3-1.2 影響氫化的鍺(111)表面鍺-氫生活期的因素 171 3-1.2-Ⅰ 影響生活期的因素—彎曲振動頻率及鍵長 172 3-1.2-Ⅱ 影響生活期的因素—模擬軌跡數目 176 3-2 鍺-氫延展振動模生活期的同位素效應 179 3-2.1 鍺-氘、氚延展振動生活期 179 3-2.2 矽-氘、氚與鑽石-氘、氚與鍺-氘、氚生活期比較 183 3-3 鍺-氫延展振動模生活期的溫度效應 185 3-4 鍺-氫延展振動模生活期的目標 190 第肆章 結論 191 第伍章 參考文獻 192

    1 K. M. Zheng and P. V. Smith, Surf. Sci., 1993, 282, 173, and reference therein.
    2 L. F. Sutcu, C. J. Chu, M. S. Thompson, R. H. Hauge, J. L. Margrave and M. P. D’Evelyn, J. Appl. Phys., 1992, 71, 5930.
    3 J. Kuppers, Surf. Sci. Rep., 1995, 22, 249.
    4 S. P. Mehandru, Alfred B. Anderson, and John C. Angus, J. Mater. Res., 1992, 7, 689.
    5 A. Robinson Brown and D. J. Doren, J. Chem. Phys., 1998, 109, 2442.
    6 Michael Frenklach, and Sergei Skokov, J. Phys. Chem. B, 1997, 101, 3025.
    7 U. Kohler, L. Andersohn, and H. Bethge, Phys. Stat. Sol. , 1997, 159, 39.
    8 S. M. Gates, C. M. Greenlif, and D. B. Beach, J. Chem. Phys., 1990, 93, 7493.
    9 S. M. Gates, C. M. Greenlif, D. B. Beach and P. A. Holbert, J. Chem. Phys., 1990, 92, 3144.
    10 J. J. Boland, Phys. Rev. Lett., 1991, 67, 1539.
    11 P. Nachtigall, C. Sosa, and K. Jordan, J. Phys. Chem., 1993, 97, 11666 .
    12 K. Sinniah, M. G. Sherman, L. B. Lewis, W. H. Weinberg, J. T. Yates, and K. C. Janda, Phys. Rev. Lett, 1989, 62, 567.
    13 K. Sinniah, M. G. Sherman, L. B. Lewis, W. H. Weinberg, J. T. Yates, and K. C. Janda, J. Chem. Phys., 1990, 92, 5700.
    14 M. L. Wise, B. G. Koehler, P. Gupta, P. A. Coon, and S. M. George, Surf. Sci., 1991, 258, 166.
    15 P. Nachtigall, K. D. Jordan, and K. C. Janda, J. Chem. Phys., 1991, 95, 8652.
    16 P. Nachtigall, K. D. Jordan, and K. C. Janda, J. Chem. Phys., 1994, 101, 8073.
    17 C. J. Wu, I. V. Ionova, and E. A. Carter, Surf. Sci., 1993, 295, 64.
    18 Z. J ing and J. L. Whitten, J. Chem. Phys, 1993, 98, 7466.
    19 C. J. Wu, I. V. Ionova and E. A. Carter, Phys. Rev. B, 1994, 49, 13488.
    20 C. J. Wu, and E. A. Carter, Phys. Rev. B, 1992, 46, 4651.
    21 A. Robinson Brown and D. J. Doren, J. Chem. Phys., 1998, 109, 2442.
    22 X. Zhu, and S. G. Louie, Phys. Rev. B, 1992, 45, 3940.
    23 R. Stumpf and P. M. Marcus, Phys. Rev. B, 1993, 47, 16016.
    24 F. Ancilotto, and A. Selloni, Phys.Rev. B, 1992, 68, 2640.
    25 R. Homke, P. Pavone, and U. Schroder, Surf. Sci., 1996, 367, 75.
    26 E. Kaxiras, and D. Joannopoulos, Phys. Rev. B, 1988, 37, 8842.
    27 B. Sandfort, A. Mazur and J. Pollmann, Phys. Rev. B, 1995, 51, 7139.
    28 F. Cargnoni, C. Gatti, Emanuela May, and D. Narducci, J. Chem. Phys. 2000, 112, 887.
    29 F. Ancilotto, and A.Selloni, Phys. Rev. Lett, 1992, 68, 2640.
    30 R. Imbihl, J. E. Demuth, F. J. Himpsel, P.M. Marcus, W. A. Thompson, and F. Jona, Phys. Rev. B, 1987, 36, 5037.
    31 M. Suemitsu, H. Nakazawa, and N. Miyamoto, Appl. Surf. Sci., 1994, 82/83, 449.
    32 F. S. Tautz, and J. A. Schaefer, J. Appl. Phys., 1998, 84, 6634.
    33 W. Stigler, P. Pavone and J. Fritsch, Phys. Rev. B, 1998, 58, 13686.
    34 C. Yang and H. Chuan Kang, J. Chem. Phys., 1999, 110, 11029.
    35 Paul C. Weakliem and Emily A. Carter, J. Chem. Phys., 1992, 96, 3240.
    36 P. Kruger and J. Pollmann, Phys. Rev. Lett., 1995, 74, 1155.
    37 A. Ramstad, G. Brocks, and P. J. Kelly, Phys. Rev. B, 1995, 51, 14504.
    38 R. A. Wolkow, Phys. Rev. Lett., 1992, 68, 2636.
    39 L. Spiess, A. J. Freeman, and P. Soukiassian, Phys. Rev. B, 1994, 50, 2249.
    40.M. Needels, M. C. Payne, and J. D. Joannopoulous, Phys. Rev. B, 1988, 38, 5543.
    41 J. A. Kubby, J. E. Griffith, R. S. Becker, and J. S.Vickers, Phys. Rev. B, 1987, 36, 6079.
    42 W. R. Lambert, P. L. Trevor, M. J. Cardillo, A. Sakai, and D. R. Hamann, Phys. Rev. B, 1987, 35, 8055.
    43 J. Furthmuller, J. Hafner, and G. Kresse, Europhys. Lett., 1994, 28, 659.
    44 B. B. Pate, Surf. Sci., 1986, 165, 83.
    45 A. V. Hamza, G. D. Kubiak, and H. R. Stulen, Surf. Sci., 1990, 237, 35.
    46 Z. Jing, and J. L. Whitten, Surf. Sci., 1992, 274, 106.
    47 A. Redondo and W. A. Goddard, J. Vac. Sci. Technol., 1982, 21, 344.
    48 E Artacho and F. Yudurain, Phys. Rev. Lett, 1989, 62, 2491.
    49 B. N. Davidson and W. E. Pickett, Phys. Rev. B, 1994, 49, 11253.
    50 John E. Northrup, Phys. Rev. B, 1991, 44, 1419.
    51 Michael Rohlfing, Peter Kruger, and Johannes Pollmann, Phys. Rev. B, 1996, 54, 13759.
    52 D. Huang, M. Frenklach, and M. Maroncelli, J. Phys. Chem., 1988, 92, 6379.
    53 Karin Larsson, and Jan-Otto Carlsson, Phys. Rev. B, 1999, 59, 8315.
    54 X. Y. Chang, D. L. Thompson, and L. M. Raff, J. Chem. Phys., 1993, 100, 1765.
    55 M. Copel, and R. M. Tromp, Phys. Rev. Lett., 1994, 72, 1236.
    56 D. J. Eaglesham, F. C. Unterwald, H. Luftman, D. P. Adams, and S. M. Yalisove, J. Appl. Phys., 1993, 74, 6615.
    57 M. Horn-von, Hoegen, and A. Golla, Phys. Rev. Lett, 1996, 76, 2953.
    58 B. R. Wu, and C. Cheng, J. Phys. Condens. Matter., 1994, 6, 1113.
    59 A. Vittadini, A. Selloni, and M. Casarin, Surf. Sci. Lett., 1993, 289, L625.
    60 P. Nachigall and K. D. Jordan, J. Chem. Phys., 1995, 102, 8249.
    61 Michael Frenklach and Sergei Skokov, J. Phys. Chem. B, 1997, 101, 3025.
    62 J. J. Koulmann, D. Steinmetz, S. Van, F. Ringeisen and D. Bolmont, Surf. Sci, 1995,331- 333, 409.
    63 T. Takatsuka, M. Fujiu, M. Sakureba, and T. Matsuura, Appl. Surf. Sci., 2000, 162-163, 156.
    64 A. Mahajan, B. K. Kellerman, J. M. Heitzinger, S. Banerjee, A. Tasch, J. M. White, and J. G. Ekerdt, J. Vac. Sci. Technol. A, 1995, 13, 1461.
    65 T. D. Durbin, D. A. Lapiano-Smith, F. R. McFeely, F. J. Himpsel, and J. A. Yarmoff, Surf. Sci., 1995, 330, 147.
    66 H. Akazawa, Surf. Sci., 1995, 323, 269.
    67 J. Chen and C. Michael Greenlief, J. Vac. Sci. Technol. A, 1997, 15, 1140.
    68 J. H. Kim and A. H. Weiss, Surf. Sci., 2000, 460, 129, and reference there in.
    69 A.V. Teplyakov, M.J. Kong, and S.F. Bent, J. Am. Chem. Soc., 1997, 119, 11100.
    70 A.V. Teplyakov, M.J. Kong, and S.F. Bent, J. Chem. Phys., 1998, 108, 4599.
    71 G.T. Wang, C. Mui, C.B. Musgrave, and S.F. Bent, J. Phys. Chem. B, 1999, 103, 6803.
    72 M.J. Kong, A.V. Teplyakov, J.G. Lyubovitsky, and S.F. Bent, Surf. Sci., 1998, 411, 286.
    73 G.P. Lopinski, T.M. Fortier, D.J. Moffatt, and R.A. Wolkow, J. Vac. Sci. Technol. A, 1998, 16, 1037.
    74 G.P. Lopinski, D.J. Moffatt, and R.A. Wolkow, Chem. Phys. Lett., 1998, 282, 305.
    75 S. Gokhale, P. Trischberger, D. Menzel, W. Widdra, H. Droge, H.-P. Steinruck, U. Birkenheuer, U. Gutdeutsch, and N. Rosch, J. Chem. Phys., 1998, 108, 5554.
    76 K.W. Self, R.I. Pelzel, J.H.G. Owen, C. Yan, W. Widdra, and W. H. Weinberg, J. Vac. Sci. Technol. A, 1998, 16, 1031.
    77 U. Birkenheuer, U. Gutdeutsch, and N. Rosch, Surf. Sci., 1998, 409, 213.
    78 Y. Taguchi, M. Fujisawa, T. Takaoka, T. Okada, and M. Nis-hijima, J. Chem. Phys., 1991, 95, 6870.
    79 M.D. Ellison, J.S. Hovis, H. Liu, and R.J. Hamers, J. Phys. Chem. B, 1998, 102, 8510.
    80 M.D. Ellison, and R.J. Hamers, J. Phys. Chem. B, 1999, 103, 6243.
    81 J.S. Hovis, S. Lee, H. Liu, and R.J. Hamers, J. Vac. Sci. Technol. B, 1997, 15, 1153.
    82 J.S. Hovis, and R.J. Hamers, J. Phys. Chem. B, 1997, 101, 9581.
    83 J.S. Hovis, H. Liu, and R.J. Hamers, J. Phys. Chem. B, 1998, 102, 6873.
    84 J.S. Hovis, H. Liu, and R.J. Hamers, Surf. Sci., 1998, 402–404, 1.
    85 J.S. Hovis, H. Liu, and R.J. Hamers, Appl. Phys. A: Mater. Sci. Process., 1998, 66, S553.
    86 J.S. Hovis, and R.J. Hamers, J. Phys. Chem. B, 1998, 102, 687.
    87H. Liu, and R.J. Hamers, Surf. Sci.,1998, 416, 354.
    88R.J. Hamers, and Y. Wang, Chem. Rev., 1996, 96, 1261.
    89R.J. Hamers, J.S. Hovis, S. Lee, H. Liu, and J. Shan, J. Phys.Chem. B, 1997, 101, 1489.
    90R.J. Hamers, J. Hovis, and H. Liu, Acta Physica Polonica A, 1997, 93, 289–295.
    91R.J. Hamers, J.S. Hovis, C.M. Greenlief, and D.F. Padowitz, Jpn. J. Appl. Phys. Pt. 1, 1999, 38, 3879.
    92 C.H. Choi, and M.S. Gordon, J. Am. Chem. Soc., 1999, 121, 11311.
    93 J.S. Hovis, S.K. Coulter, R.J. Hamers, M.P. D’Evelyn, J.J.N. Russell, and J.E. Butler, J. Am. Chem. Soc., 2000, 122, 732.
    94 G.T. Wang, S.F. Bent, J.J.N. Russell, J.E. Butler, and M.P. D’Evelyn, J. Am. Chem. Soc., 2000, 122, 744.
    95 S.W. Lee, L.N. Nelen, H. Ihm, T. Scoggins, and C.M.Greenlief, Surf. Sci., 1998, 410, L773.
    96 A.V. Telyakov, P. Lal, Y.A. Noah, and S.F. Bent, J. Am. Chem. Soc., 1998, 120, 7377.
    97 R. Konecny, and D.J. Doren, J. Am. Chem. Soc.,1997, 119, 11098.
    98 R. Konecny, and D.J. Doren, Surf. Sci., 1998, 417, 169.
    99 M.J. Bozack, P.A. Taylor, W.J. Choyke, and J..J.T. Yates, Surf. Sci., 1986, 177, L933.
    100 J. Yoshinobu, H. Tsuda, M. Onchi, and M. Nishijima, J. Chem. Phys., 1987, 87, 7322.
    101 L. Clemen, R.M. Wallace, P.A. Taylor, M.J. Dresser, W.J. Choyke, W.H. Weinberg, and J.J.T. Yates, Surf. Sci., 1992, 268, 205.
    102 L.H. Chua, R.B. Jackman, and J.S. Foord, Surf. Sci., 1994, 315, 69.
    103 C.C. Cheng, R.M. Wallace, P.A. Taylor, W.J. Choyke, and J.J.T. Yates, J. Appl. Phys., 1990, 67, 3693.
    104 W. Widdra, C. Huang, and W.H. Weinberg, Mater. Res. Soc. Symp. Proc., 1994, 334, 99.
    105 C. Huang, W. Widdra, and W.H. Weinberg, Surf. Sci., 1994, 315, L953–L958.
    106 M. Ikeda, T. Maruoka, and N. Nagashima, Surf. Sci., 1998, 416, 240–244.
    107 A.J. Fisher, P.E. Blo¨ chl, and G.A.D. Briggs, Surf. Sci., 1997, 374 , 298.
    108 K. Kim, S. Choi, and K. L. Wang, J. Vac. Sci. Technol. B, 1992, 10, 1.
    109 I. Kusunoki, and Y. Igari, Appl. Surf. Sci., 1992, 59, 95.
    110 J. A. Powell, J. B. Petit, J. H. Edgar, I. G. Jenkins, L. G. Matus, J. W. Yang, P. Pirouz, W. J. Choyke, L. Clemen, and M. Yoganathan, Appl. Phys. Lett., 1991, 59, 333.
    111 M. Nishijima, J. Yoshinobu, H. Tsuda, and M. Onchi, Surf. Sci., 1987, 192, 383.
    112 P. A. Taylor, R. M. Wallace, C. C. Cheng, W. H. Weinberg, M. J. Dresser, W. J. Choyke and J. T. Yates, Jr., J. Am. Chem. Soc., 1992, 114, 6754.
    113 C. Huang, W. Widdra, X. S. Wang, and W. H. Weinberg, J. Vac. Sci. Technol. A, 1993, 11, 2250.
    114 W. Widdra, C. Huang, S. I. Yi and W. H. Weinberg, J. Chem. Phys., 1996, 105, 5605.
    115 S. H. Xu, Y. Yang, M. Keeffe, and G. J. Lapeyre, Phys. Rev. B, 1999, 60, 11586.
    116 M. Toscano and N. Russo, J. Mol. Catal., 1989, 55, 101.
    117 R. H. Zhou, P. L. Cao, and L. Q. Lee, Phys. Rev. B, 1993, 47, 10601.
    118 K. Feng, Z. H. Liu, and Z. Lin, Surf. Sci., 1995, 329, 77.
    119 B. I. Craig, and P. V. Smith, Surf. Sci., 1992, 276, 174.
    120 B. I. Craig, and P. V. Smith, Surf. Sci., 1993, 285, 295.
    121 Q. Liu, and R. Hoffmann, J. Am. Chem. Soc., 1995, 117, 4082.
    122 Baoqi Meng, Dimitrios Maroudas, and W. H. Weinberg, Chem. Phys. Lett., 1997, 278, 97.
    123 D. C. Sorescu and Kenneth D. Jordan, J. Phys. Chem. B, 2000, 104, 8259.
    124 L. Li, C. Tindall, O. Takaoka, Y. Hasegawa, and T. Sakurai, Phys. Rev. B, 1997, 56, 4648.
    125 Collin Mui and Stacey F. Bent, J. Phys. Chem. A, 2000, 104, 2457-2462.
    126 Danesha R. Fitzgerald and Douglas J. Doren, J. Am. Chem. Soc., 2000, 122, 12334.
    127 K. N. Hork, J. Evanseck, and Y. Li, Acc. Chem. Res., 1995, 28 ,81, and reference therein.
    128 R. B. Woodward, and R. Hoffmann, Sngew. Chem. Int. Ed. Engl., 1969, 8, 781.
    129 E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Ca rpenter, F. Weinhol d, NBO, 4.0; Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, 1996.
    130 T .I. Hukka, T. A. Pakkanen and M. P. D’Evelyn, Thin Solid Films, 1993, 225, 203.
    131 McMurry, J. Organi c Chemistry, 4th ed; Books/Cole Publishing Company:Pacific Grove, 1996, 23-24.
    132 D. J. Doren, Adv. Chem. Phys., 1996, 95, 1.
    133 P. Hohenberg, and W. Kohn, Phys. Rev. , 1964, 136, B864.
    134 W. Kohn and L. J. Sham, Phys. Rev., 1965, 140, A1133.
    135 T. L. Gilbert, Phys. Rev. B, 1975, 12, 2111.
    136 R. O. Jones, and O. Gun narson, Rev. Mod. Phys., 1989, 61, 689.
    137 M. Levy, Phys. Rev. A, 1982, 26, 1200.
    138 S. Fahy, X. W. Wang and S. G. Louie, Phys. Rev. Lett., 1988, 61, 1631.
    139 D. C. Langreth and M. J. Mehl, Phys. Rev. B, 1983, 28, 1809.
    140 N. W. Ashcroft and N. D. Mermin, Solid State Physics(Holt Saunders, Philadephia), 1976, p113.
    141 A. Baldereschi, Phys. Rev. B, 1973, 7, 5212.
    142 D. J. Chadi and M. L. Cohen, Phys. Rev. B, 1973, 8, 5747.
    143 H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 1976, 13, 5188.
    144 Sverre Froyen, Phys. Rev. B, 1989, 39, 3168.
    145 P. Giannozzi, S. de Gironcoli, P. Pavone, and S.Baroni, Phys. Rev. B, 1991, 43, 7231.
    146 J. Dabrowski, and M. Scheffler, Appl. Surf. Sci., 1992, 15, 56.
    147 F. Fritsch, P. Pavone, and U. Schroder, Phys. Rev. Lett., 1993, 71, 4194.
    148 F. Fritsch, and P. Pavone, Surf. Sci., 1995, 344, 159.
    149 J. E. Northrup, Phys. Rev. B, 1993, 47, 10032.
    150 J. C. Phillips, Phys. Rev., 1958, 112, 685.
    151 M. L. Cohen and V. Heine, Solid State Physics, 1970, 24, 37.
    152 M. T. Yin and M. L. Cohen, Phys. Rev. B, 1982a, 25, 7403.
    153 L. Kleinman and D. M. Bylander, Phys. Rev. Lett., 1982, 48, 1425.
    154 G. B. Bachelet, D. R. Hamann, and M. Schluter, Phys. Rev. B, 1982, 26, 4199.
    155 G. P. Kerker, J. Phys. C., 1980, 13, L189.
    156 N. Troullier, and J. L. Martins, Phys. Rev. B, 1991, 43, 1993.
    157 D. Vanderbilt, Phys. Rev. B, 1990, 41, 7892.
    158 Andrew R. Leach, Molecular Modelling.
    159 G. Kresse and J. Hafner, Phys. Rev. B, 1993, 47, 588.
    160 G. Kresse and J. Hafner, Phys. Rev. B, 1994, 49, 14251.
    161 G. Kresse and J. Furthmuller, Comput. Mater. Sci., 1996, 6, 15.
    162 N. D. Mermin, Phys. Rev., 1965, 137, A1141.
    163 J. P. Perdew and A. Zunger, Phys. Rev. B, 1981, 23, 5048.
    164 D. M. Wood and A. Zunger, J. Phys. A, 1985, 18, 1343.
    165 P. Pulay, Chem. Phys. Lett., 1980, 73, 393.
    166 G. Kresse and J. Hafner, J. Phys.:Condens. Matt., 1994, 6, 8245.
    167 M. Methfessel and A. Paxton, Phys. Rev. B, 1989, 40, 3616.
    168 G. Gresse and J. Furthmuller, Phys. Rev. B, 1996, 54, 11169.
    169 M. B. Nardelli, F. Finocchi, M. Palummo, R. D. Felice, C. M. Bertoni, F. Bernardini, and S. Ossicini, Surf. Sci., 1992, 269-270, 879.
    170 G. Marc Loudon, Organic Chemistry, third edition, 1994, p680.
    171 Yasuharu Okamoto, J. Phys. Chem. B, 2001, 105, 1813.
    172 Z. Zhu, N. Shima, and M. Tsukada, Phys. Rev. B, 1989, 40, 11868.
    173 S. P. Tang, A. J. Freeman, and B. Delley, Phys. Rev. B, 1992, 45, 1776.
    174 P. W. Atkin, Physical Chemistry, fifth edition, p941-943.
    175 I. –S. Hwang, and J. Golovchenko, Phys.Rev. Lett., 1993, 71, 255.
    176 Efthimios Kaxiras, Thin Solid Films, 1996, 272, 386.
    177 T. Iijima, and O. Sugino, Surf. Sci., 1997, 391, L1199.
    178 G. Panzarini and L. Colombo, Phys. Rev. Lett., 1994, 73, 1636.
    179 S. Jeong, and A. Oshiyama, Phys. Rev. B, 1998, 58, 12958.
    180 S. Hong, and M. Y. Chou, Phys. Rev. B, 1997, 55, 9975.
    181 Lisa B. Lewis, Jeffrey Segall, and Kenneth C. Janda, J. Chem. Phys., 1995, 102, 7222.

    1 R. P. Chin, X. Y. Blasé, R. Shen, and S. G. Louie, Europhys. Letters. 1995, 30, 399-404.
    2 R. P. Chin, J. Y. Huang, Y. R. Shen, T. J. Chuang, and H. Seki, Phys. Rev. B 1995, 52, 5985.
    3 J. C. .Lin, K. H. Chen, H. C. Chang, C. S. Tsai, C. E. Lin, and J. K. Wang, J. Chem. Phys. 1996, 105, 3975.
    4 P. Guyot-Sionnest, Phys. Rev. Lett. 1991, 66, 1489.
    5 P. .Guyot-Sionnest, P. H. Lin, and E. M. Hiller, J. Chem. Phys. 1995, 102, 4269.
    6 C. S. Tsai, C. E. Lin, J. C. Lin, and J. K. Wang, Chem. Phys. Lett. 1998, 295, 509.
    7 Y. J. .Chabal, Surf. Sci. 1986, 168,594.
    8 W. K. .Liu, M. Hayashi, J. C. Lin, H. C. Chang, S. H. Lin, and J. K. Wang, J. Chem. Phys. 1997, 106,5920.
    9 Y. R. Shen, Nature 1989, 337, 519.
    10 Y. J. Chabal, Surf. Sci. Repts 1988, 8, 211.
    11 P. Guyot-Sionnest, P. Dumas, and Y. J. Chabal, J. Electron Spectrosc. Relat. Phenom. 1990, 54/55, 27.
    12 P. Dumas, Y. J. Chabal, and G. S. Higashi, Phys. Rev. Lett. 1990, 65, 1124.
    13 M. Morin, P. Jakob, N. J. Levions, Y. J. Chabal, and A. L. Harris, J. Chem. Phys. 1992, 96, 6203.
    14 P. Jakob, and Y. J. Chabal, J. Chem. Phys. 1991, 95, 2897.
    15 M. A. Hines, Y. J. Chabal, T. D. Harris, and A. L. Harris, Phys. Rev. Lett. 1993, 71, 2280.
    16 H. C. Chang, J. C. Lin, J. Y. Wu, and K. H. Chen, J. Phys. Chem. 1995, 99, 11081.
    17 C. L. Cheng, H. C. Chang, J. C. Lin, and K. -J. Song, Phys. Rev. Lett. 1997, 78, 3713.
    18 C. Su, K. –J. Song, Y. –L. Wang, H. –L. Lu, T. J. Chuang, and J. –C. Lin, J. Chems. Phys. 1997, 107, 7543.
    19 C. Su, and J. C. Lin, Surf. Sci. 1998, 406,149.
    20 C. Su, and J. C. Lin, J. Chem. Phys. 1998, 21, 9549.
    21 C. S. Tsai, C. Chen, C. E. Lin, J. C. Lin, and J. K. Wang, Surf. Sci. 1999, 427-428, 318.
    22 B. J. Waclawski, D. T. Pierce, N. Swanson, and R. J. Celotta, J. Vac. Sci. Technol., 1982, 21, 368.
    23 R. Tubino, L. Piseri, and G. Zerbi, J. Chem. Phys. 1972, 56, 1022.
    24 S. Watanable, Surf. Sci., 1996, 351, 149.
    25 E. Kaxiras, and J. D. Joannopoulos, Phys. Rev. B 1988, 37, 8842.
    26 H. Y. Yang, and G. Lucovsky, Surf. Rev. and Lett., 1997, 4, 891.
    27 P. Guyot-Sionnest, P. H. Lin, and E. M. Hiller, J. Chem. Phys., 1995, 102, 4269.
    28 P. .Guyot-Sionnest, P. Dumas, Y. J. Chabal, and G. S. Higashi, Phys. Rev. Lett. 1990, 64, 2156.
    29 H. Kabayashi, K. Edamoto, M. Onchi, and M. Nishijima, J. Chem. Phys., 1983, 78, 7429.
    30 F. E. Figueirido, and R. M. Levy, J. Chem. Phys. 1992, 97, 703.
    31 R. M. Whitnell, K. R. Wilson, and J. T. Hynes, J. Chem. Phys. 1992, 96, 5354.
    32 J. Tully, Y. J. Chabal, K. Ragha-vachari, J. W. Bowman, and R. R.Lucchese, Phys. Rev. B 1985, 31, 1184.
    33 S. H. Lin, J. Chem. Phys. 1974, 61, 3810.
    34 S. H. .Lin, J. Chem. Phys. 1976, 65, 1053.
    35 H. Gai, and G. A. Voth, J. Chem. Phys. 1993, 99, 740.
    36 R. Rey, and J. T. Hynes, J. Chem. Phys. 1998, 108, 142.
    37 Y. C. Sun, H. Gai, and G. A. Voth, J. Chem. Phys. 1994, 100, 3247.
    38 Y. C. Sun, H. D. Gai, and G. A. Voth, Chem. Phys. 1996, 205, 11.
    39 Y. C. Sun, and J. M. Chen, J. Phys. Chem. 1997, 101, 7082.
    40 J. S. Cao, and G. A. Voth, J. Chem. Phys. 1993, 99, 10070.
    41 J. S. Cao, and G. A. Voth, J. Chem. Phys. 1994, 100, 5093.
    42 J. S. Cao, and G. A. Voth, J. Chem. Phys. 1994, 100, 5106.
    43 J. S. Bader, B. J. Berne, E. Pollak, and P, Hanggi, J. Chem. Phys. 1996, 104, 1111.
    44 R. K. Wangsness, F. Bloch, Phys. Rev. 1953, 89, 728.
    45 A. G. Redfield, IBM J. Res. Devel. 1957, 1, 19.
    46 H. F. Lu, M. S. Ho, S. C. Hong, A. H. Liu, P. F. Wu, Y. C. Sun, J. Chem. Phys. 1998, 109, 6898.
    47 Y. C. Sun, H. F. Lu, M. S. Ho, Chem. Phys. Lett. 2000, 318, 7.
    48 H. .Frotzheim, H. Lammering, and H. L. Gunter, Phys. Rev. B , 1983, 27, 2278.
    49 Honma, I.; Kawai, H.; Komiyama, H.; Tanaka, K. J. Appl. Phys. 1989, 65, 1074.
    50 Toyoshima, Y. J. Non-Crystalline Solids 1996, 198-200, 1042.
    51 C. Su, C. –S. Tsai, C. –E. Lin, K. –H. Chen, J. –K. Wang, and J. C. Lin, Surf. Sci., 2000, 445, 139-150.
    52 R. Tubino, L. Piseri, and G. Zerbi, J. Chem. Phys. 1972, 56, 1022.
    53 S. C. Hong, M. S. Ho, H. F. Lu, and Y. C. Sun, J. Chin. Chem. Soc., 2000, 47, 881.
    54 J. M. Jean, R. A. Friesner, and G. R. Fleming, J. Chem. Phys., 1992, 96, 5827.
    55 L. Papagno, X. Y. Shen, J. Anderson, G. S. Spagnolo, and G. J. Lepeyre, Phys. Rev. B, 1986, 34, 7188.

    無法下載圖示
    QR CODE