簡易檢索 / 詳目顯示

研究生: 朱志達
Chih-Ta Chu
論文名稱: 內含二極體之矽上微環共振器之研究與應用
Study of Diode included SOI Microring Resonator and Applications
指導教授: 曹士林
Tsao, Shyh-Lin
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 181
中文關鍵詞: 絕緣層上矽晶波導微環形共振器有限差分時域法光束傳播法光網路光開關
英文關鍵詞: SOI, waveguide, microring resonator, Finite Difference Time Domain, Beam Propagation Method, photonic network, optical switch
論文種類: 學術論文
相關次數: 點閱:386下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出以絕緣層上矽晶為基材之微環型諧振器並應用自由載子電漿效應所組成之主動光學元件開關器;我們提出了元件的設計並對元件參數進行優化。將環形波導區域結合二極體之結構以電壓調變環形波導區域中雜質的濃度變化,以電子電洞對分離及再復合的載子濃度變化來改變其折射率,藉此從波導的輸出端擷取出不同的特定信號,並於此論文中設計微環形共振腔的幾何結構對其共振波長的影響並探討其傳送功率值、串音干擾及耦合效率之影響特性分析。
    接著,我們將此光學元件開關器應用於高密度分波多工的光開關網路系統中,並對其路徑損失、訊噪比及開關元件數在不同開關系統中作比較分析。利用這新的光學元件開關器,可以有效的減少元件尺寸,並可達到任意選取特定信號至不同的輸出端,如此才可充分利用有限的波長資源。最後,本文提出一新型光波長路由架構並對其通道數增加進行分析。

    In this thesis, we design a silicon-on-insulator (SOI) waveguide switch which used the microring cavity structure. We also utilize free carrier plasma effect (FCPE) to vary local refractive index so as we can change the signal light propagation direction. We propose active silicon waveguide-coupled microring resonator using PN junction diode and Schottky diode. It doped the Boron and Phosphorous ions inside the micro ring structure and added voltage to change the carrier concentration distribution. By changing carrier concentration distribution, the effective refractive index will be changed. We can drop the particular wavelength through the switch element device. By this characteristics, it will be applied to optical cross connect. The insertion loss, cross talk and the transmission status are discussed in the thesis. The path loss and SNR were also calculated. We apply for our designed optical switch in several wavelength division multiplexer (WDM) photonic switching networks. We discuss the photonic networks with considering the following parameters: number of switch elements, number of cross talk, path loss, and device length in this thesis.

    Chinese Abstract…………………………………………………………i English Abstract………………………………………………………....ii Acknowledgment………………………………………………………..iii Contents ………………………………………………….………..….….iv List of Figures …………………………...………………………...…..viii List of Tables ……………………………….……….….………...……xix Publication Lists……………………………………………………….xx Chapter1 Introduction …………………………………………...……1 Chapter 2 Design and Simulation of Integrated 2x2 Electro-optical Routing Wavelength Switch by Microring Resonator ……………………........................15 2-1 Introduction of the Technique Silicon-on-Insulator Waveguide and Microring Resonator…………………………………………………...16 2-1-1 Intorduction to Silicon-on-Insulator Material characteristics……16 2-1-2 Introduction of Microring Resonator Devices by SOI Substrate Material…………………………………………………………..……18 2-1-3 Overview of Microring as Passive and Active Components……20 2-1-3-1 Introduction of Microring Resonators as Passive Components………………………………………….20 2-1-3-2 Introduction of Microring Resonators as Active Components…………………………………………..21 2-2 Background Theorem of Beam Propagation Method (BPM), Finite Difference Time Domain (FDTD) Method, Coupling Mode Theorem (CMT )and Scattering Matrix of Microring Resonator………………..22 2-2-1 Mathematical Formulation of Beam Propagation Method….......24 2-2-2 Mathematical Formulation of Finite Difference Time Domain (FDTD) Method…………………………………………………26 2-2-3 Coupled Mode Theory (CMT) of Microring Resonator….……...28 2-2-4 Scattering Matrix of Microring Resonator……….………………36 2-3 Design and Simulation of Integrated 2x2 Electro-Optical Routing Wavelength Switch by Microring Resonator Based on SOI…………...43 2-3-1 Free-Carrier Plasma Dispersion Effect…………………………..44 2-3-2 Simulation of Diode Included Integrated 2x2 Electro-Optical…..46 2-3-3 Design and Simulation of Integrated 2x2 Electro-Optical Routing Wavelength Switch by Microring Resonator Based on SOI………………………………………………………………50 2-4 Discussions and Conclusions………………………………………..60 Chapter 3 Design and Analysis of Integrated Cross-grid Array Wavelength Switch by Microring Resonator Based on SOI Waveguide………………………………….79 3-1 Introduction of A Cross-grid Array Optical Routing Wavelength Switch by Microring Resonators Structure…………………………………….80 3-2 Mathematical Formulation of Cross-grid Array Transmission Scattering Matrix Approach by Microring Resonator…………………………...81 3-3 Design and Analysis of Cross-grid Array optical Wavelength Switch by SOI Microring Resonator…………………………………………..…83 3-3-1 Design and Analysis of 4×4 Optical Routing Wavelength Switch by SOI Microring Resonator…..……………………………….84 3-3-2 Design and Analysis of 8×8 Optical Routing Wavelength Switch by SOI Microring Resonator…..………………………………..89 3-3-3 Design and Analysis of 16×16 Optical Routing Wavelength Switch by SOI Microring Resonator…..……………………………….94 3-3-4 Design and Analysis of 32×32 Optical Routing Wavelength Switch by SOI Microring Resonator…..………………………………101 3-4 Discussion of the mathematical Formulation of SNR and Path Loss by N×N grid array Switching Networks....................................................107 3-5 Conclusions………………………………………………………… ..109 Chapter 4 Design and Application of Integrated Optical Switching Network Based on SOI Microring Resonator………………………………………...138 4-1 Introduction of Basic Components and Characteristics of Photonic Switching Network…………………………………………..............139 4-2 Mathematical Formulation of Optical Switching Network with Different Kind Switching Architecture…………………………………………142 4-2-1 Mathematical Formulation of Photonic Switching Architecture , such as Crossbar、Double Crossbar、N–Stage Planer Network.142 4-2-2 Mathematical Formulation of Photonic Switching Architecture , such as Benes、Dilated Benes、AS/AC Network……………144 4-3 Analysis of Application Integrated Optical Switching Network Based on Microring Resonator…………...……………………………………146 4-4 Discussion and Conclusions………………………………………….149 Chapter 5 Conclusions……………………………………………….159 Reference……………………………………………………………….161

    [1] K. H. Liu, Brian J. Wilson, and John Y.Wei, “A scheduling application for WDM optical networks,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 10, pp. 2041–2050, 2000.
    [2] K. Zhu and Biswanath Mukherjee, “Traffic grooming in an optical WDM mesh network,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 1, pp. 122–133, 2002.
    [3] A. J. Keating and Arthur James Lowery, “Wavelength stabilization in packet-switched WDM networks,” IEEE Journal of Lightwave Technology, vol. 15, no.1, pp. 76–85, 1997.
    [4] Tarek A. Ramadan, Robert Scarmozzino, and Richard M. Osgood, “A novel 1×4 coupler-multiplexer permutation switch for WDM applications,” IEEE Journal of Lightwave Technology, vol. 18, no. 4, pp. 579–588, 2000.
    [5] M. Misono, N. Henmi, T. Hosoi, and M. Fujiwara, “High-speed wavelength switching and stabilization of an acoustooptic tunable filter for WDM network in broadcasting stations,” IEEE Photonics Technology, vol. 8, no. 4, pp. 572–574, 1996.
    [6] H. G. Bach, A. Umbach, S. van Waasen, R. M. Bertenburg, and G. Unterborsch, “Ultrafast monolithically integrated InP-based photoreceiver: OEIC-design, fabrication, and system application,” IEEE Journal of Selected Topics in Quantum Electronic, vol. 2, no. 2, pp. 418–423, 1996.
    [7] A. F. Jezierski and P. J. R. Layborn, “Integrated semiconductor ring lasers,” Inst. Elect. Eng. Proc. J., vol. 135, pp. 17–24, Feb. 1988.
    [8] T. Krauss, P. J. R. Laybourn, and J. Roberts, “CW operation of semiconductor ring lasers,” Electon. Lett., vol. 26, pp. 2095–2097, Dec.1990.
    [9] S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FD-TD computational electromagnetics simulations of microring and microdisk lasers,” in Opt. Soc. Amer. Annu. Meet., Rochester, NY, paper ThZ4, Oct. 1996.
    [10] D. Rafizadeh, J. P. Zhang, L. Wang, S. C. Hagness, A. Taflove, S. T. Ho, and R. C. Tiberio, “Semiconductor microcavity resonator multiplexer/demultiplexer,” in Opt. Soc. Amer. Annu. Meet., Rochester, NY, paper ThP4, Oct. 1996.
    [11] E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J., vol. 48, pp. 2103–2132, Sept. 1969.
    [12] J. P. Hohimer, D. C. Craft, G. R. Hadley, G. A. Vawter, and M. E.Warren, “Single-frequency continuous-wave operation of ring resonator diode lasers,” Appl. Phys. Lett., vol. 59, pp. 3360–3362, Dec. 1991.
    [13] H. Han, M. E. Favaro, D. V. Forbes, and J. J. Coleman, “InxGa1fxAs-AlyGa1fyAs-GaAs strained-layer quantum-well hetero structure circular ring lasers,” IEEE Photon. Technol. Lett., vol. 4, pp. 817–819, Aug. 1992.
    [14] P. P. Absil, J. V. Hryniewicz, B. E. Little, F. G. Johnson, K. J. Ritter, and P. T. Ho. “Vertically coupled microring resonators using polymer wafer bonding”. IEEE Photonics Technology Letters vol. 13 pp. 49-51, 2001.
    [15] F. C. Blom, H. Kelderman, H. W. J. M. Hoekstra, A. Driessen, Th. J. A. Popma, S. T. Chu, and B. E. Little. “A single channel dropping Flter based on a cylindrical microresonator”Optics Communications, vol.167 pp.77-82, 1999.
    [16] S. Suzuki, K. Shuto, and Y. Hibino, “Integrated-optic ring resonators with two stacked layers of silica waveguide on Si,” IEEE Photon. Technol. Lett., vol. 4, pp. 1256–1258, 1992.
    [17] S. T. Chu, “Glass ring resonators,” in 1997 Kanagawa Academy of Science and Technology Annual Research Seminar, Kawasaki, Japan.
    [18] B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Hans, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett., vol. 10, pp. 549–551, Apr. 1998.
    [19] D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range,” Opt. Lett., vol. 22, no. 16, pp. 1244–1226, 1997.
    [20] B. J. Gallacher, J. Hedley, J. S. Burdess, A. J. Harris, and M. E. McNie, “Electrostatic tuning of a micro-ring gyroscope,” in Tech. Proc. 2004 NSTI Nanotechnology Conference and Trade Show, vol. 1, ch. 9, Boston, MA, 2004, pp. 430–433.
    [21] J. V. Hryniewicz, Y. J. Chen, S. H. Hsu, C.-H. D. Lee, and G. A. Porkolab, “Ultrahigh vacuum chemically assisted ion beam etching system with a three grid ion source,” J. Vacuum Sci. Technol. A, vol. 15, pp. 616–621, 1997.
    [22] M. E. McNie, J. S. Burdess, A. J. Harris, J. Hedley, and M.Young, “High aspect ratio ring gyroscope fabricated in [100] silicon on insulator (SOI) material,” in Proc. International Conference on Solid State Sensors and Actuators, Sendai, Japan, Jun. 7–10, 1999.
    [23] A. J. Harris, J. S. Burdess, D.Wood, R. Langford, G.Williams, M. C. L. Ward, and M. E. McNie, “Issues associated with the design, fabrication, and testing of crystalline silicon ring gyroscope with electromagnetic actuation and sensing,” J. Micromechan. Microeng., vol. 8, pp. 284–292, 1998.
    [24] J. Tidmarsh, S. Fasham, P. Stopford, A. Tomlinson, T. Bestwick, “A narrow linewidth laser for WDM applications using silicon waveguide technology,” LEOS '99. IEEE Lasers and Electro-Optics Society, vol. 2, pp. 497–498, 1999.
    [25] M. K. Chin, C. A. Youtsey, W. Zhao, T. Pierson, S. L. Wu, Z. Ren, R. Wang, L. Wang, Y. G. Zhao, and S. T. Ho, “Ultra-compact directional couplers and race-track microcavity resonators as building blocks for WDM devices,” in Proc. CLEO'99, Baltimore, MD, May 1999, Postdeadline paper CPD22.
    [26] T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, M. R. Josey, “Effects of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photonics Technology Letters, vol. 12, pp. 59–61, 2000.
    [27] Y. Hida, Y. Inoue, F. Hanawa, T. Fukumitsu, Y. Enomoto, N. Takato, “Silica-based 1/spl times/32 splitter integrated with 32 WDM couplers using multilayered dielectric filters for fiber line testing at 1.65/spl mu/m,” IEEE Photonics Technology Letters, vol. 11, pp. 96–98, 1999.
    [28] J. P. Raskin, A. Viviani, D. Flandre, J. P. Colinge, “Substrate crosstalk reduction using SOI technology,” IEEE Transactions on Electron Devices, vol. 44, pp. 2252–2261, 1997.
    [29] J. Schmidtchen, A. Splett, B. Schuppert, K. Petermann, “Low loss integrated-optical rib-waveguides in SOI,” Proceedings of 1991 SOI Conference on IEEE International, pp. 142–143, 1991.
    [30] A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide.” IEEE Journal of Lightwave Technology, vol. 15, no. 3, pp. 505–518, 1997.
    [31] P. De Dobbelaere, K. Falta, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Communications Magazine, vol. 40, no. 3, pp. 88–95, 2002.
    [32] Y. -A. Peter, F. Gonte, H. P. Herzig, and R. Dandliker, “Micro-optical fiber switch for a large number of interconnects using a deformable mirror,” IEEE Photonics Technology Letters, vol. 14, no. 3, pp. 301–303, 2002.
    [33] T. Bakke, C. P. Tigges, and C. T. Sullivan, “1×2 MOEMS switch based on silicon-on-insulator and polymeric waveguides,” Electronics Letters, vol. 38, no. 4, pp. 177–178, 2002.
    [34] R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, “New structure of silica-based planar lightwave circuits for low-power thermooptic swutch and its application to 8×8 optical matrix switch,” Journal of Lightwave Technology, vol. 20, no. 6, pp. 993–1000, 2002.
    [35] T. Sakata, H. Togo, M. Makihara, F. Shimokawa, and K. Kaneko, “Improvement of switching time in a thermocapillarity optical switch,” Journal of Lightwave Technolongy, vol. 19, no. 7, pp. 1023–1027, 2001.
    [36] H. C. Tapalian, J. -P. Laine, and P. A. Lane, “Thernooptical switches using coated microsphere resonators,” IEEE Photonics Technology Letters, vol. 14, no. 8, pp. 1118–1120, 2002.
    [37] R. Krahenbuhl, M. M. Howerton, J. Dubinger, and A. S. Greenblatt, “Performance and modeling of advanced Ti: LiNbO3 digital optical switches,” Journal of Lightwave Technology, vol. 20, no. 1, pp. 92–99, 2002.
    [38] C. M. Gallep and E. Conforti, “ Reduction of semiconductor optical amplifier switching times by preimpulse step-injected current technique,” IEEE Photonics Technology Letters, vol. 14, no. 7, pp. 902–904, 2002.
    [39] N. A. Riza and S. Yuan, “Low optical interchannel crosstalk, fast switching speed, polarization independent 2×2 fibre optic switch using ferroelectric liquid crystals,” Electronics Letters, vol. 34, no. 13, pp. 1341–1342, 1998.
    [40] A. J. Agranat, “Electroholographic wavelength selective crossconnect,” Proceeding of 1999 Digest of the LEOS Summer Topical Meetings, pp. II61–II62, 26-30 June 1998.
    [41] L. H. Domash, Chen Yong-Ming, P. Haugsjaa, and M. Oren, “Electronically switchable waveguide Bragg grating for WDM routing,” Proceeding of 1997 Digest of the IEEE/LEOS Summer Topical Meetings, pp. 34–35, 11-15 Aug. 1997.
    [42] M. J. Potasek and Y. Yang, “Multiterabit-per-second all-optical switching in an nonlinear directional coupler,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 3, pp. 714–721, 2002.
    [43] K. Nashimoto, H. Moriyama, S. Nakamura, M. Watanabe, T. Morikawa, E. Osakabe, and K. Haga, “PLZT electro-optic waveguides and switches,” Proceeding of Optical Fiber Communication Conference and Exhibit 2001 (OFC 2001), vol. 4, pp. PD10-1–PD10-3, 2001.
    [44] M. P. Earnshaw and D. W. E, Allsopp, “Semiconductor space switches based on multimode interference couplers,” Journal of Lightwave Technology, vol. 20, no. 4, pp. 643–650, 2002.
    [45] B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, “Microring resonator arrays for VLSI photonics,” . submitted for publication.
    [46] D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, and S. T. Ho, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range,” Opt. Lett., vol. 22, pp. 1244–1246, 1997.
    [47] ITU-T Recommendation G983.1, “Broadband optical access systems based on passive optical networks (PON)”, 1998.
    [48] ITU-T Recommendation G983.1, “Broadband optical access systems based on passive optical networks (PON)”, 1998.
    [49] Adrian J. Keating and Arthur James Lowery, “Wavelength stabilization in packet-switched WDM networks,” IEEE Journal of Lightwave Technology, vol. 15, no.1, pp. 76–85, 1997.
    [50] Tarek A. Ramadan, Robert Scarmozzino, and Richard M. Osgood, “A novel 1×4 coupler-multiplexer permutation switch for WDM applications,” IEEE Journal of Lightwave Technology, vol. 18, no. 4, pp. 579–588, 2000.
    [51] P. D. Trinh, S. Yagnanarayanan, and B. Jalali, “Integrated optical directional couplers in silicon-on-insulator,” Electron. Lett., vol. 31, no. 24, pp. 2097–2098, 1995.
    [52] M. Misono, N. Henmi, T. Hosoi, and M. Fujiwara, “High-speed wavelength switching and stabilization of an acoustooptic tunable filter for WDM network in broadcasting stations,” IEEE Photonics Technology, vol. 8, no. 4, pp. 572–574, 1996.
    [53] T. Sadagopan, S. June Choi, K. Djordjev, and P. D. Dapkus, “Carrierinduced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation,” IEEE Photon. Technol. Lett.,vol. 17, no. 2, pp. 414–416, Feb. 2005.
    [54] H. G. Bach, A. Umbach, S. van Waasen, R. M. Bertenburg, and G. Unterborsch, “Ultrafast monolithically integrated InP-based photoreceiver: OEIC-design, fabrication, and system application,” IEEE Journal of Selected Topics in Quantum Electronic, vol. 2, no. 2, pp. 418–423, 1996.
    [55] R. A. Soref, J. Schmidtchen and K. Petermann, “Large single-mode rib waveguides in Ge-Si and Si-on-SiO2, IEEE J. Quantum Electron., vol. 27, no. 8, pp. 1971-1974, Aug. 1991.
    [56] J. C. C. Fan, M. W. Geis, and B.-Y. Tsaur, “Lateral epitaxy by seeded solidification for growth of single-crystal Si films on insulators,” Appl. Phys. Lett., vol. 38, no. 5, pp. 365-367, 1981.
    [57] Y. Omura, S. Nakashima, and K. Izumi, “Investigation on high-speed performance of 0. l-fim-gate ultrathin-film CMOS/SIMOX,” IEICE Trans. Electron., vol. E15-C, pp. 1491-1497, 1992.
    [58] Y. -A. Peter, F. Gonte, H. P. Herzig, and R. Dandliker, “Micro-optical fiber switch for a large number of interconnects using a deformable mirror,” IEEE Photonics Technology Letters, vol. 14, no. 3, pp. 301–303, 2002.
    [59] P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, “Wavelength conversion in GaAs micro-ring resonators,” Opt. Lett., vol. 25, pp. 554–556, Apr. 2000.
    [60] D. G. Rabus and M. Hamacher, “MMI-coupled ring resonators in GaInAsP-InP,” IEEE Photon. Technol. Lett., vol. 13, no. 8, pp. 812–814, Aug. 2001.
    [61] B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett., vol. 10, no. 4, pp. 549–551, Apr. 1998.
    [62] J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett., vol. 29, no. 24, pp. 2861–2863, 2004.
    [63] T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett., vol. 86, no. 9, p. 081 101, 2004.
    [64] T. Sadagopan, S. J. Choi, S. J. Choi, K. Djordjev, and P. D. Dapkus, “Carrier- induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation,” IEEE Photon. Technol. Lett., vol. 17, no. 2, pp. 414–416, Feb. 2005.
    [65] S. C. Hagness, D. Rafizadeh, S. T. Ho, and T. Taflove, “FDTD microcavity simulations: Nanoscale waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol., vol. 15, pp. 2154–2165, Nov. 1997.
    [66] D. Rafizadeh, J. P. Zhang, L. Wang, S. C. Hagness, A. Taflove, S. T. Ho, and R. C. Tiberio, “Semiconductor microcavity resonator multiplexer/demultiplexer,” in Opt. Soc. Amer. Annu. Meet., Rochester, NY, paper ThP4, Oct. 1996.
    [67] E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech.J., vol. 48, pp. 2103–2132, Sept. 1969.
    [68] J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, “Directional light output from photonic-wire microcavity semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 8, pp. 968–970,Aug. 1996
    [69] M. K. Chin, and S. T. Ho, “Design and modeling of Waveguide-Coupled Single-Mode microring Resonators,” J. Lightwave Technol., vol. 16, pp. 1433-1446, Aug 1998
    [70] K. S. Yee, ”Numerical solution of initial boundary value problems involving Maxwell’sequation in isotropic media,” IEEE J. Quantum Electron., vol.14, pp. 302-307, April 1966
    [71] S. Chu, and S. K. Chaudhuri, ”A Finite-Difference Time-Domain Method for the Design and Analysis of Guided-Wave Optical Structures,” J. Lightwave Technol., vol. 7, pp. 2033-2038, Dec 1989
    [72] K. Okamoto. Fundamentals of Optical Waveguides. Academic Press, 2000
    [73] J. H. Richmond. “Scattering by a dielectric cylinder of arbitrary cross section shape”. IEEE Trans. Antennas Propagation, vol. 13 pp.334-341, May 1965
    [74] L. F. Stokes, M. Chodorow, and Shaw H. J. “All single mode fiber resonator”. Optics Letters, vol. 7(6) pp. 288-290, June 1982
    [75] T Tamir (Ed.). Integrated Optics (Second Corrected and Updated Edition). Springer-Verlag, Ger-many, 1982.
    [76] V. Van, P.P. Absil, J. V. Hryniewicz, and P. T. Ho. Propagation loss in single-mode GaAs-AlGaAs microring resonators: measurement and model. IEEE J. Lightwave Technology, vol. 19(11) pp. 1734-1739, 2001.
    [77] V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, and P.T. Ho. Optical signal processing using nonlinear semiconductor microring resonators. IEEE J. of Selected Topics in Quantum Electronics, vol.8(3) pp. 705-713, 2002.
    [78] E. K. Lin, G. Z. Li, Y. Gao, C. S. Guo, “Zero-gap directional coupler switch integration into a silicon-insulator for 1.3m operation,” Optical Letters, vol. 21, pp.1664–1666, 1996.
    [79] A. Layadi, A. Vonsovical, R. Orobtchouk, D. Pascal, A. Koster, “Low loss optical waveguide on standard SOI/SIMOX substrate,” Optical Communication, vol. 146, pp. 31–33, 1998.
    [80] J. V. Roey, J. V. D. Donk, and D. Lagasse, “Beam propagation: analysis and assessment,” Journal of the Optical Society of America, vol. 71, pp. 803–810, 1981.
    [81] Y. C. Chao. “Optics measurement resolution and BPM errors,” Particle Accelerator Conference, 1997. Proceedings of the 1997, vol. 2, pp. 2125–2127, 1998.
    [82] K. Kawano, T. Kitoh, M. Kohtoku, T. Takeshita, Y. Hasumi, “3-D semivectorial analysis to calculate facet reflectivities of semiconductor optical waveguides based on the bi-directional method of line BPM (MoL-BPM),” IEEE Photonics Technology Letters, vol. 101, pp. 108–110, 1998.
    [83] BeamPROP software including FULLWAVE software, Rsoft, 2000.
    [84] R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron., vol. 27, pp. 1971–1974, 1991.
    [85] C. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, “Silicon thermooptical micro-modulator with 700-kHz –3-dB bandwidth,” IEEE Photonics Technology Letters, vol. 7, no. 4, pp. 363–365, 1995.
    [86] C. K. Tang, G. T. Reed, A. J. Walton, and A. G. Rickman, “Low-loss, single-mode, optical phase modulator in SIMOX material,” IEEE Journal of Lightwave Technology, vol. 12, no. 8, pp. 1394–1400, 1994.
    [87] Antonello Cutolo, Mario Iodice, Paolo Spirito, and Luigi Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide.” IEEE Journal of Lightwave Technology, vol. 15, no. 3, pp. 505–518, 1997.
    [88] P. D. Hewitt and G. T. Reed, “Improving the response of optical phase modulators in SOI by computer simulation,” IEEE Journal of Lightwave Technology, vol. 18, no. 3, pp. 443–450, 2000.
    [89] Richard A. Soref, and Brian R. Bennett, “Electrooptical effects in silicon,” IEEE Journal of Quantum Electronics, vol. QE-23, no. 1, pp. 123–129, 1987.
    [90] Adrian Vonsovice and Alain Koster, “Numerical simulation of a silicon-on-insulator waveguide structure for phase modulation at 1.3m,” IEEE Journal of Lightwave Technology, vol. 17, no. 1, pp. 129–135, 1999.
    [91] R. S. Ohl, "Light-sensitive electric device," U.S. Patent 2,402,662. Filed May 27, 1941. Granted June 25, 1946. 2. M. Riordan and L. Hoddeson, "The origins of the pn junction," IEEE Spectrum, 34, 46 (1997).
    [92] W. Shockley, "The theory of p-n junctions in semiconductors and p-n junction transistors," Bell Syst. Tech.J., 28,435 (1949).
    [93] 4. C. T. Sah, R. N. Noyce and W. Shockley, “Carrier generation and recombination in p-n junctions and p-n junction characteristics”,Proc. IRE, 45, 1228 (1957).
    [94] J. L. Moll, “The evolution of the theory for the voltage-current characteristic of p-n junctions”,Proc. IRE, 46, 1076(1958).
    [95] A. Nussbaum, “The theory of semiconducting junctions”, in R. K. Willardson and A. C. Beer, Eds., Semiconductors and semimetals, Vol. 15, p. 39, Academic Press, New York, 1981.
    [96] Marco Mama, Luc ThBvenaz, Philippe Robert , Michel J. Declercq and Adrian M. Ionescu “A Novel SO1 Schottky Electro-optical Modulator for GHz High-speed Switching” digest-of technical papers vol. 2 PP. 943-1938
    [97] R. A. Soref, “Silicon-based optoelectronics,” in Proc. IEEE, vol. 81, pp.1687–1706, Dec. 1993.
    [98] J. P. Lorenzo and R. A. Soref, “1.3 μm electro-optic silicon switch,” Appl. Phys. Lett., vol. 51, no. 1, pp. 6–8, 1987.
    [99] G. V. Treyz, P. G. May, and J. M. Halbout, “Silicon optical modulator at 1.3 μm based on free-carrier absorption,” IEEE Electron. Device Lett.,vol. 12, pp. 276–278, 1991.
    [100] G. V. Treyz, P. G. May, and J. M. Halbout, “Silicon Mach-Zehnder waveguide interferometerrs based on the plasma dispersion effect,” Appl. Phys. Lett., vol. 59, no. 7, pp. 771–773, 1991.
    [101] Y. L. Liu, E. K. Liu, S. L. Zhang, G. Z. Li, and J. S. Luo, “Silicon 1×2 digital optical switch using plasma dispersion,” Electron. Lett.,vol. 30, no. 2, pp. 130–131, 1994.
    [102] Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, pp: 325-327, 2005.
    [103] C. Li and A. W. Poon, “Active silicon microring resonators using metal-oxide-semiconductor capacitors”, proceedings of IEEE/LEOS tst international Conference on Group IV Photonics, Hong Kong S.A.R., China, Sep. 29 - Oct. 1, 2004.
    [104] R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of electro-optical switching in silicon”, in Proc. SPIE, vol. 704, pp. 32-37, 1986.
    [105] Tang, P. et al, “Low Loss Rapidly Tnable Optical Add Drop Multiplexer in Ti:LiNb03,” Technical Digest, Optical Fiber Communication ConJ Anaheim, CA, , pp. 190-191. March. 2002
    [106] Rafzadeh, D. et al, “Waveguide-Coupled AIGaAsEaAs Microcavity Ring and Disk resonators with High Finesse and 21.6-nm Free Spectral Range,” Optics Lett., Vol. 22, No. 16, , pp. 1244-1246. 1997.
    [107] Van, V. et 01, “All-Optical Nonlinear Switching in GaAs- AlGaAs Microring Resonators,” IEEE Photon. Technol. Lett., Vol. 14, No.l(2002), pp.74-76.
    [108] B. E. Little, H. A. Haus, J. S. Foresi, L. C. Kimerling, E. P. Ippen and D. J. Ripin, “Wavelenght switching and routing using absorption and resonance”, IEEE Photonic Technology Letters, Vol. 10, No. 6, 816-818, 1998.
    [109] S.T Chu, B.E Little, W. Pan, T. Kaneko, S. Sat0 and Y. Kokubun, “An eight channel
    [110] add-drop filter using vertically coupled microring resonators over a cross grid”, IEEE Photonic Technology Letters, Vol. Ill, No. 6,691-693, 1999.
    [111] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol., vol. 15, pp.998–1005, 1997.
    [112] B. E. Little, H. A. Haus, J. S. Foresi, L. C. Kimerling, E. P. Ippen, and D. J. Ripin, “Wavelength switching and routing using absorption and resonance,” IEEE Photon. Technol. Lett., vol. 10, pp. 816–818, 1998.
    [113] R. E. Collin, Foundations for Microwave Engineering. NewYork: Mc- Graw-Hill.
    [114] N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. Worhoff and A. Driessen, “Analysis of generalized Mach-Zehnder interferometers for variable-ratio power splitting and optimized switching” IEEE J. Lightwave technology, vol. 17, no. 12, 1999.
    [115] Jingwei Liu, Jinzhong Yu, Shaowu Chen, and Zhiyong Li, “Design and fabrication of compact nonblocking 4×4 optical matrix switch on SOI by anisotropic chemical etching”, OE Letters, pp. 436-439, 1997.
    [116] S. G. Han, H. J. Lee, M. H. Lee, H. J. Lee, H. Y. Kim, Y. H. Won, “High performance 2/spl times/2 polymeric electro-optic switch with modified bifurcation optically active waveguide structure”, Electronics Letters, vol. 32, Issue: 21, pp. 1994 -1995, 10 Oct. 1996.
    [117] H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett., vol. 26, no. 2, pp. 87–88, 1990.
    [118] S.T Chu, B.E Little, W. Pan, T. Kaneko, S. Sat0 and Y. Kokubun, “An eigh tchannel add-drop filter using vertically coupled microring reonators over a cross grid”, IEEE Photonic Technology Letters, Vol. Ill, No. 6,691-693, 1999.
    [119] H. Yoshimura, K. L. Sato, and N. Takachio, “Future photonic transport networks based on WDM technologies,” IEEE Commun. Mag., vol. 37, pp. 74–81, 1999.
    [120] Shyh-Lin Tsao, Jiang-Hung Tien, and Chun-Wei Tsai, “Simulation on an SOI grating-based optical add/drop multiplexer,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 6, pp. 1277–1284, 2002.
    [121] Baojun Li, and Soo Jin Chua, “2×2 optical waveguide with bow-tie electrode based on carrier-injection total internal reflection in SiGe alloy,” IEEE Photonics Technology Letters, vol. 13, no. 3, pp. 206–208, 2001.
    [122] Hisaharu Yanagawa, Ken Ueki, and Yoshiyuki Kamata, “Polarization- and wavelength-insensitive guided-wave optical switch with semiconductor Y junction,” IEEE Journal of Lightwave Technology, vol. 8, no. 8, pp. 1192–1197, 1990.
    [123] B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, “Advances in silicon-on-insulator optoelectronics (Invited Paper),” IEEE Journal of Selected Topics in Quantum Electronics, vol. 4, no. 6, pp. 938–947, 1998.
    [124] P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, “CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology,” IEEE Photonics Technology Letters, vol. 12, no. 6, pp. 660–662.
    [125] Paolo Dainesi, Adrian M. Ionescu, Luc Thevenaz, Kaustav Banerjee, Michel J. Declercq, Philippe Robert, Philippe Renaud, Philippe Fluckiger, Cyrille Hibert, and Georges A. Racine, “3-D integrable optoelectronic devices for telecommunications ICs,” Proceeding of IEEE International Solid-State Circuits Conference (ISSCC 2002), vol. 1, 6, Feb. 2002.
    [126] P. Dainesi, L. Thevenaz, and Ph. Robert, “5MHz 2×2 optical switch in silicon on insulator technology using plasma dispersion effect,” Proceeding of 27th European Conference on Optical Communication 2001 (ECOC’01), vol. 2, pp. 132–133, 30 Sept.-4 Oct., 2001
    [127] P. Dainesi, L. Thevenaz, Ph. Fluckiger, C. Hibert, G. Racine, Ph, Robert, Ph. Renaud, A. M. Ionescu and M. Declercq, “A novel CMOS SOI unbalanced Mach-Zehnder interferometer: from design and simulations to fabrication and characterization,” Proceeding of IEEE International SOI Conference 2001, pp. 137–138, 1-4, Oct. 2001.
    [128] J. C. Campbell and T. Li, “Electro-optical multi-mode waveguide modulator or switch,” Journal Appl. Phys., vol. 50, pp. 6149–6154, 1979.
    [129] S. Nagai, G. Morishima, M. Yagi, and K. Utaka, “InGaAsP/InP multimode interference photonic switches for monolithic photonic integrated circuits,” Jpn. J. Appl. Phys., vol. 38, pp. 1269–1272, 1999.
    [130] Shuichi Nagai, Goh Morishima, Hirokazu Inayoshi, and Katsuyuki Utaka, “Multimode interference photonic switches (MIPS),” IEEE Journal of Lightwave Technology, vol. 20, no. 4, pp. 675–681, 2002.
    [131] P. Grancstrand, "Strictly nonblocking 8 x 8 integrated optical switch matrix," Electron. Lett., vol. 22, pp. 816-818, July 1986.
    [132] E. Marom, "Integrated optics switch array network decomposition," Opt. Commun., vol. 58, pp. 92-94, May, 1986.
    [133] R. A. Spanke and V. E. Benes, "N-stagi planar optical permutation network," AppL Opt., vol. 26, pp. 1226-1229, Apr. 1987.
    [134] H. P. Taylor, "Optical-waveguide connecting networks," Electron. Lett., vol. 10, pp. 41-43, Feb. 1974.
    [135] K. Habara and K. Kiloichi, "Optical time-division space switches using tree-structured directional couplers," Electron. Lett., vol. 21, pp. 631-632, July 1985.
    [136] H. Oltayama, A. Matoba, R. Shibuya, and T. Ishida, "Optical switch matrix with simplified N x N tree structure," J. Lightwave Technol, vol. 7, pp. 1023-1028, July 1989.
    [137] R. A. Spanke, "Architectures for large nonblocking optical space switches," J. Quantum Electron., vol. QE-22, pp. 964-967, June 1986.
    [138] R. A. Spanke, "Architectures for guided-wave optical space switching systems," IEEE Commun. Mag., vol. 25, pp. 42-48, May 1987.
    [139] K. Padmanabhan and A.N. Netravali, "Dilated networks for photonic switching," IEEE Trans. Commun., vol. COM-35, pp. 1357-1365, Dec. 1987.
    [140] H. S. Hinton, "A nonblocking optical interconnection' network using directional couplers," GLOBECOM '84, Atlanta, GA, Nov. 1984, pp. 885-889.
    [141] R. J. Reason, "Optical space switch architectures based upon lithium niobate crosspoints," J. Brit. Telecom. Technol., vol. 7, no. I, Jan. 1989.
    [142] A. Jajszczyk, "Application of single-stage electronic networks concepts to photonic switching," Top. Meet. Photonic Switching Tech. Japan, Apr. 1990, pp. 77-79.
    [143] C. T. Lea, "Crossover minimization in directional-coupler-based pho-tonic switching systems," IEEE Trans. Commun., vol. 36, pp. 355-363, Mar. 1988.
    [144] M. Kondo, N. Takadao, K. Komatsu, and Y. Ohta, "32 switch elements integrated low-crosstalk LiNbOa 4 X 4 optical matrix switch," Proc. IOOC-ECOC'85, Venice, tialy, pp. 361-364, 1985.
    [145] V. E. Benes, Mathematical Theor, “of Connecting Networks and Tele-phone Traffic.” New York: Academic, 1965.

    QR CODE