研究生: |
陳俞靜 Yu-Ching Chen |
---|---|
論文名稱: |
親和層析法(IMAC)搭配質譜技術對LPS-treated RAW 264.7之磷酸蛋白質體學研究 Phosphoproteomic Analysis of LPS-treated RAW 264.7 by IMAC Enrichment and Mass Spectrometry |
指導教授: |
陳頌方
Chen, Sung-Fang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 固定金屬離子親和層析法 、磷酸化胜肽 、液相層析串聯質譜儀 |
英文關鍵詞: | IMAC, phosphopeptide, LC-MS/MS |
論文種類: | 學術論文 |
相關次數: | 點閱:99 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於生物體而言,胜肽或蛋白質的磷酸化是極其重要的。因蛋白質磷酸化可調節許多生物體內化學反應,如新陳代謝(metabolism)、細胞間的訊號傳遞(signal transduction)等。因此,有效並正確的鑑定磷酸化位置可以幫助開發新的藥物或了解疾病的發生。
在本篇論文中,使用固定金屬離子親和層析法(Immobilized Metal Affinity Chromatography, IMAC)純化磷酸化蛋白質標準品α-酪蛋白(α-casein)之磷酸化胜肽,搭配奈流液相層析串聯質譜(nano-LC ESI MS/MS)可發現其特異性並不亞於市售金屬氧化物親和層析法(Metal Oxide Affinity Chromatography, MOAC)之純化結果。並討論利用LTQ-XL分別使用質譜掃描策略neutral loss MS3(NL-MS3)及multistage activation(MSA)偵測磷酸化胜肽,在一張圖譜中MSA可獲得的胜肽碎片資訊較NL-MS3來的多,當進行資料庫搜尋鑑定胜肽時MSA也可提升其可信度。
在第二部分,會針對以脂多醣體(Lipopolysaccharide, LPS)刺激後的老鼠巨噬細胞株(RAW 264.7),在前處理的部分分別使用Amicon® Ultra、Zeba™ desalting columns及丙酮蛋白質沉澱法三種不同的萃取策略去除界面活性劑及干擾鹽類,接著利用Fe-NTA IMAC純化磷酸化胜肽來進行深入探討,不同的萃取方式所殘留的小分子可能會影響後續純化的效率,實驗結果證實選擇Zeba™ desalting columns作為前處理方法可使IMAC得到最多的磷酸化胜肽/蛋白質。其後,優化了胜肽與IMAC固相載體之最佳使用比例,發現當使用不足或過量的IMAC固相載體會減少磷酸化胜肽的數量或降低其特異性。
Protein phosphorylation plays a significant role in biological process. Since reversible phosphorylation events is known to be involved regulating many intracellular biological processes such as metabolism, signal transduction. The detection and identification of the phosphorylation sites are important to understand physiological states.
Tryptic peptides generated from α-casein were enriched phosphopeptides by immobilized metal affinity chromatography (IMAC); different MS acquisition methods using LTQ-XL, neutral loss MS3 (NL-MS3) and multistage activation (MSA) were compared with results based on the number of phosphopeptide identifications. The MSA method performed as well or better then NL-MS3, the spectra represented higher signal intensities from the fragment ions and it is a faster route compared with NL-MS3. The efficiency of phosphopeptide enrichment is severely affected by various reagents commonly utilized in cell biology protocols, it is important to investigate the effect on different pre-purification step prior to phosphopeptide enrichment. Phosphopeptide-enrich strategies were applied to purify LPS-treated RAW 264.7, and different protein extraction methods were also investigated to monitor the influence in downstream enrichment procedures. Zeba desalting columns (Thermo Scientific) was appropriate for pre-purification due to the minimum interference before phosphopeptide enrichment. Furthermore, the peptides-to-IMAC beads ratio was also optimized.
1. Morandell, S., et al., Phosphoproteomics strategies for the functional analysis of signal transduction. Proteomics, 2006. 6(14): p. 4047-56.
2. Reinders, J. and A. Sickmann, State-of-the-art in phosphoproteomics. Proteomics, 2005. 5(16): p. 4052-61.
3. Hunter, T., Signaling - 2000 and beyond. Cell, 2000. 100(1): p. 113-127.
4. Graves, J.D. and E.G. Krebs, Protein phosphorylation and signal transduction. Pharmacol Ther, 1999. 82(2-3): p. 111-21.
5. David L. Nelson, M.M.C., Lehninger Principles of Biochemistry, ed. T. Edition.
6. Harsha, H.C. and A. Pandey, Phosphoproteomics in cancer. Molecular Oncology, 2010. 4(6): p. 482-495.
7. Gloeckner, C.J., et al., Phosphopeptide Analysis Reveals Two Discrete Clusters of Phosphorylation in the N-Terminus and the Roc Domain of the Parkinson-Disease Associated Protein Kinase LRRK2. J Proteome Res, 2010. 9(4): p. 1738-1745.
8. Hanger, D.P., B.H. Anderton, and W. Noble, Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends in Molecular Medicine, 2009. 15(3): p. 112-119.
9. Schwarz, E. and S. Bahn, Biomarker discovery in psychiatric disorders. Electrophoresis, 2008. 29(13): p. 2884-2890.
10. Yu, L.R., H.J. Issaq, and T.D. Veenstra, Phosphoproteomics for the discovery of kinases as cancer biomarkers and drug targets. Proteomics Clinical Applications, 2007. 1(9): p. 1042-1057.
11. Su, H.C., C.A. Hutchison, and M.C. Giddings, Mapping phosphoproteins in Mycoplasma genitalium and Mycoplasma pneumoniae. Bmc Microbiology, 2007. 7.
12. Eymann, C., et al., Dynamics of protein phosphorylation on Ser/Thr/Tyr in Bacillus subtilis. Proteomics, 2007. 7(19): p. 3509-3526.
13. Carrascal, M., et al., Phosphorylation Analysis of Primary Human T Lymphocytes Using Sequential IMAC and Titanium Oxide Enrichment. J Proteome Res, 2008. 7(12): p. 5167-5176.
14. Manning, G., et al., The protein kinase complement of the human genome. Science, 2002. 298(5600): p. 1912-34.
15. Xu, K.P. and F.S.X. Yu, Cross talk between c-Met and epidermal growth factor receptor during retinal pigment epithelial wound healing. Investigative Ophthalmology & Visual Science, 2007. 48(5): p. 2242-2248.
16. Pandey, A., et al., Identification of a novel immunoreceptor tyrosine-based activation motif-containing molecule, STAM2, by mass spectrometry and its involvement in growth factor and cytokine receptor signaling pathways. Journal of Biological Chemistry, 2000. 275(49): p. 38633-38639.
17. Gronborg, M., et al., A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies - Identification of a novel protein, Frigg, as a protein kinase A substrate. Molecular & Cellular Proteomics, 2002. 1(7): p. 517-527.
18. Kaufmann, H., J.E. Bailey, and M. Fussenegger, Use of antibodies for detection of phosphorylated proteins separated by two-dimensional gel electrophoresis. Proteomics, 2001. 1(2): p. 194-199.
19. Sevecka, M. and G. MacBeath, State-based discovery: a multidimensional screen for small-molecule modulators of EGF signaling. Nat Methods, 2006. 3(10): p. 825-31.
20. Collins, M.O., L. Yu, and J.S. Choudhary, Analysis of protein phosphorylation on a proteome-scale. Proteomics, 2007. 7(16): p. 2751-68.
21. Hunter, T. and B.M. Sefton, Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A, 1980. 77(3): p. 1311-5.
22. Chaga, G., J. Hopp, and P. Nelson, Immobilized metal ion affinity chromatography on Co2+-carboxymethylaspartate-agarose Superflow, as demonstrated by one-step purification of lactate dehydrogenase from chicken breast muscle. Biotechnology and Applied Biochemistry, 1999. 29: p. 19-24.
23. Hochuli, E., H. Dobeli, and A. Schacher, New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. Journal of Chromatography, 1987. 411: p. 177-84.
24. Porath, J., et al., Metal chelate affinity chromatography, a new approach to protein fractionation. Nature, 1975. 258(5536): p. 598-9.
25. Andersson, L. and J. Porath, Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem, 1986. 154(1): p. 250-4.
26. Neville, D.C.A., et al., Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Science, 1997. 6(11): p. 2436-2445.
27. Nuhse, T.S., et al., Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant Journal, 2007. 51(5): p. 931-940.
28. Komayama, K., et al., Quality control of Photosystem II: cleavage and aggregation of heat-damaged D1 protein in spinach thylakoids. Biochim Biophys Acta, 2007. 1767(6): p. 838-46.
29. Gruhler, A., et al., Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Molecular & Cellular Proteomics, 2005. 4(3): p. 310-27.
30. Figeys, D., et al., An integrated microfluidics-tandem mass spectrometry system for automated protein analysis. Anal Chem, 1998. 70(18): p. 3728-34.
31. Li, S. and C. Dass, Iron(III)-immobilized metal ion affinity chromatography and mass spectrometry for the purification and characterization of synthetic phosphopeptides. Anal Biochem, 1999. 270(1): p. 9-14.
32. Nuhse, T.S., et al., Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Molecular & Cellular Proteomics, 2003. 2(11): p. 1234-43.
33. Posewitz, M.C. and P. Tempst, Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem, 1999. 71(14): p. 2883-92.
34. Ficarro, S.B., et al., Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol, 2002. 20(3): p. 301-5.
35. Brill, L.M., et al., Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry. Anal Chem, 2004. 76(10): p. 2763-2772.
36. Lansdell, T.A. and J.J. Tepe, Isolation of phosphopeptides using solid phase enrichment. Tetrahedron Letters, 2004. 45(1): p. 91-93.
37. Trinidad, J.C., et al., Comprehensive identification of phosphorylation sites in postsynaptic density preparations. Molecular & Cellular Proteomics, 2006. 5(5): p. 914-922.
38. Sagert, J. and J.H. Waite, Hyperunstable matrix proteins in the byssus of Mytilus galloprovincialis. J Exp Biol, 2009. 212(Pt 14): p. 2224-36.
39. Stewart, I.I., T. Thomson, and D. Figeys, O-18 Labeling: a tool for proteomics. Rapid Communications in Mass Spectrometry, 2001. 15(24): p. 2456-2465.
40. Speicher, K.D., et al., Systematic analysis of peptide recoveries from in-gel digestions for protein identifications in proteome studies. J Biomol Tech, 2000. 11(2): p. 74-86.
41. Jensen, S.S. and M.R. Larsen, Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Communications in Mass Spectrometry, 2007. 21(22): p. 3635-3645.
42. Wolschin, F., S. Wienkoop, and W. Weckwerth, Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics, 2005. 5(17): p. 4389-4397.
43. Leitner, A., et al., Optimizing the performance of tin dioxide microspheres for phosphopeptide enrichment. Analytica Chimica Acta, 2009. 638(1): p. 51-57.
44. Ikeguchi, Y. and H. Nakamura, Determination of organic phosphates by column-switching high performance anion-exchange chromatography using on-line preconcentration on titania. Analytical Sciences, 1997. 13(3): p. 479-483.
45. Pinkse, M.W.H., et al., Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-nanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem, 2004. 76(14): p. 3935-3943.
46. Bodenmiller, B., et al., Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods, 2007. 4(3): p. 231-237.
47. Larsen, M.R., et al., Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Molecular & Cellular Proteomics, 2005. 4(7): p. 873-886.
48. Sugiyama, N., et al., Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Molecular & Cellular Proteomics, 2007. 6(6): p. 1103-1109.
49. Beausoleil, S.A., et al., Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A, 2004. 101(33): p. 12130-12135.
50. Alpert, A.J., Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. Journal of Chromatography, 1990. 499: p. 177-96.
51. McNulty, D.E. and R.S. Annan, Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Molecular & Cellular Proteomics, 2008. 7(5): p. 971-80.
52. Alpert, A.J., Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal Chem, 2008. 80(1): p. 62-76.
53. Gan, C.S., et al., A comparative study of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) versus SCX-IMAC-based methods for phosphopeptide isolation/enrichment. J Proteome Res, 2008. 7(11): p. 4869-77.
54. Oda, Y., T. Nagasu, and B.T. Chait, Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat Biotechnol, 2001. 19(4): p. 379-382.
55. McLachlin, D.T. and B.T. Chait, Improved beta-elimination-based affinity purification strategy for enrichment of phosphopeptides. Anal Chem, 2003. 75(24): p. 6826-6836.
56. Zhou, H.L., J.D. Watts, and R. Aebersold, A systematic approach to the analysis of protein phosphorylation. Nat Biotechnol, 2001. 19(4): p. 375-378.
57. Thomson, J.J., Further experiments on positive rays. Philosophical Magazine, 1912. 24: p. 209-253.
58. M. S. B. Munson, F.H.F., Chemical Ionization Mass Spectrometry. I. General Introduction. J. Am. Chem. Soc., 1966. 88(12): p. 2621–2630.
59. Fenn, J.B., et al., Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989. 246(4926): p. 64-71.
60. Michael Karas, D.B., Franz Hillenkamp, Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal. Chem., 1985. 57(14): p. 2935–2939.
61. M. A. Posthumus, P.G.K., H. L. C. Meuzelaar, M. C. Ten Noever de Brauw, Laser desorption-mass spectrometry of polar nonvolatile bio-organic molecules. Anal. Chem., 1978. 50(7): p. 985–991.
62. Zeleny, C., Industry Application of Electrospray Technology. Phys. Rev., 1917. 10(1).
63. Dole, M.M., L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B. , Molecular Beams of Macroions. Journal of Chemical Physics, 1968. 49(5): p. 2240–2249.
64. S. F. Wong, C.K.M., J. B. Fenn, Multiple charging in electrospray ionization of poly(ethylene glycols). J. Phys. Chem., 1988. 92(2): p. 546–550.
65. Tang, K. and A. Gomez, On the Structure of an Electrostatic Spray of Monodisperse Droplets. Physics of Fluids, 1994. 6(7): p. 2317-2332.
66. Loo, R.R.O., H.R. Udseth, and R.D. Smith, Evidence of Charge Inversion in the Reaction of Singly Charged Anions with Multiply Charged Macroions. Journal of Physical Chemistry, 1991. 95(17): p. 6412-6415.
67. Iribarne, J.V. and B.A. Thomson, On the evaporation of small ions from charged droplets J. Chem. Phys, 1976. 64(6).
68. K., G.B.a.B., Strategy for the mass spectrometric verification and correction of the primary structures of proteins deduced from their DNA sequences. Proc. Natl. Acad. Sci, 1984. 81(7 ): p. 1956-1960.
69. Mortz, E., et al., Sequence tag identification of intact proteins by matching tanden mass spectral data against sequence data bases. Proc Natl Acad Sci U S A, 1996. 93(16): p. 8264-7.
70. Yates, J.R., 3rd, et al., Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem, 1995. 67(8): p. 1426-36.
71. Tsai, C.F., et al., Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res, 2008. 7(9): p. 4058-69.
72. Loo, R.R., N. Dales, and P.C. Andrews, Surfactant effects on protein structure examined by electrospray ionization mass spectrometry. Protein Science, 1994. 3(11): p. 1975-83.
73. Ye, J., et al., Optimized IMAC-IMAC protocol for phosphopeptide recovery from complex biological samples. J Proteome Res, 2010. 9(7): p. 3561-73.
74. Wolters, D.A., M.P. Washburn, and J.R. Yates, 3rd, An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem, 2001. 73(23): p. 5683-90.