研究生: |
林思彤 Lin, Sih-Tong |
---|---|
論文名稱: |
基於掌性鈣鈦礦的發光二極體 The Light-Emitting Diodes Based on Chiral Perovskite |
指導教授: |
趙宇強
Chao, Yu-Chiang |
口試委員: |
趙宇強
Chao, Yu-Chiang 駱芳鈺 Lo, Fang-Yuh 許經夌 Hsu, Ching-Ling |
口試日期: | 2024/07/22 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 準二維鈣鈦礦 、掌性 、旋光 、自旋電子學 、發光二極體 |
英文關鍵詞: | Quasi-2D Perovskite, Chirality, Optical rotation, Spintronics, Light-Emitting Diode |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401186 |
論文種類: | 學術論文 |
相關次數: | 點閱:140 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究旨在引入具有對映異構物特性之「掌性」有機長鏈分子R/S-MBA,在這個基礎之下合成準二維掌性鈣鈦礦R/S-(MBA)2(MA0.2Cs0.8)Pb2Br7作為主要研究目標,最後製成發光二極體後並探討其旋光特性。
第一部份研究使用準二維掌性鈣鈦礦R/S-(MBA)2(MA0.2Cs0.8)Pb2Br7作為「發光層」或「掌性選擇層(有機螢光材料Superyellow(Super yellow light-emitting PPV copolymer)作為發光層)」,透過比較其左掌性或右掌性的旋光特性進行各項量測並探討其光電特性。在這項實驗中,我們發現掌性鈣鈦礦在做為發光層時電致發光無法表現出明確的旋光特性;但在做為掌性選擇層時能夠發揮良好的左旋或右旋之選擇性,使得電致發光能明確分辨出左旋光或右旋光。
第二部份研究中,本文使用R-(MBA)2(MA0.2Cs0.8)Pb2Br7作為發光層並透過添加不同比例之3-(Decyldimethylammonio)propanesulfonate inner salt(Caprylyl sulfobetaine,SB3-10),成功地將元件之效率由0.767%提升至2.304%。其關鍵在於引入此穩定劑能夠與鈣鈦礦晶粒邊界上的陰、陽離子作用進而鈍化鈣鈦礦薄膜中晶粒的表面缺陷,達到改質的效果。
This research aims to introduce the chiral organic long-chain molecule R/S-MBA with enantiomeric properties in order to synthesize the Quasi-2D chiral perovskite R/S-(MBA)2(MA0.2Cs0.8)Pb2Br7 as the main research target. We will then fabricate it into a light-emitting diode and explore its photoelectric properties.
The first part of the research mainly focuses on using the Quasi-2D chiral perovskite R/S-(MBA)2(MA0.2Cs0.8)Pb2Br7 as the emission layer or as the chiral selective layer (with the organic fluorescent material Superyellow, a Super yellow light-emitting PPV copolymer, as the emission layer). By comparing the optical rotation characteristics, various measurements were made, and its photoelectric properties were discussed. In this experiment, we found that the electroluminescence of the chiral perovskite does not show clear optical rotation characteristics when used as the emission layer. However, it can exhibit good left-handed or right-handed selectivity when used as a chiral selective layer, thereby allowing electroluminescence to clearly distinguish between left circularly polarized light and right circularly polarized light.
In the second part of the study, we used R-(MBA)2(MA0.2Cs0.8)Pb2Br7 as the emission layer and added different proportions of 3-(Decyldimethylammonio) propanesulfonate inner salt (SB3-10), successfully increasing the external quantum efficiency (EQE) from 0.767% to 2.304%. The key is that the introduction of this stabilizer can interact with anions and cations on the boundaries of perovskite grains to passivate the defects on the grain surface in the perovskite film, achieving surface modification.
1 Billing, D. G. & Lemmerer, A. Bis[(S)-β-phenethylammonium] tribromoplumbate(II). Acta Crystallographica Section E Structure Reports Online 59, m381-m383 (2003). https://doi.org:10.1107/s1600536803010985
2 Ahn, J. et al. A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites. Materials Horizons 4, 851-856 (2017). https://doi.org:10.1039/c7mh00197e
3 Lu, H. et al. Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. Science advances 5, eaay0571 (2019).
4 Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129-1133 (2021).
5 Krieg, F. et al. Colloidal CsPbX(3) (X = Cl, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability. ACS Energy Lett 3, 641-646 (2018). https://doi.org:10.1021/acsenergylett.8b00035
6 Guo, B. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nature Photonics 16, 637-643 (2022). https://doi.org:10.1038/s41566-022-01046-3
7 Sun, Q. & Yin, W. J. Thermodynamic Stability Trend of Cubic Perovskites. J Am Chem Soc 139, 14905-14908 (2017). https://doi.org:10.1021/jacs.7b09379
8 Saparov, B. & Mitzi, D. B. Organic-Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chem Rev 116, 4558-4596 (2016). https://doi.org:10.1021/acs.chemrev.5b00715
9 Milot, R. L. et al. Charge-Carrier Dynamics in 2D Hybrid Metal-Halide Perovskites. Nano Lett 16, 7001-7007 (2016). https://doi.org:10.1021/acs.nanolett.6b03114
10 Basnet, P. Metal oxide photocatalytic nanostructures fabricated by dynamic shadowing growth, University of Georgia Athens, GA, (2015).
11 Long, G. et al. Spin control in reduced-dimensional chiral perovskites. Nature Photonics 12, 528-533 (2018). https://doi.org:10.1038/s41566-018-0220-6
12 Schlaf, R. et al. Photoemission spectroscopy of LiF coated Al and Pt electrodes. Journal of Applied Physics 84, 6729-6736 (1998). https://doi.org:10.1063/1.369000