簡易檢索 / 詳目顯示

研究生: 陸冠穎
Lu, Kuan-Yin
論文名稱: 基於可變空間規劃法之發動機零件庫存最佳化
Exploring the Optimal Component Inventories of Aircraft Engines Based on the Changeable Space Programming
指導教授: 黃啟祐
Huang, Chi-Yo
黃廷合
Huang, Ting-Ho
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 70
中文關鍵詞: 發動機零組件庫存最佳化新規劃法可變空間規劃法
英文關鍵詞: Engine Components, Inventory Optimization, De Novo Programming, Changeable Space Programming
DOI URL: http://doi.org/10.6345/NTNU201901065
論文種類: 學術論文
相關次數: 點閱:192下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於民用航空業蓬勃發展,全球主要航空業者紛紛購買更多的客機,以因應越來越多的運輸需求。由於民航機之數量日增,發動機維修需求也快速成長,維修廠也必須擁有合理的零件庫存,以滿足飛機修護需求。雖然有許多學者已經探討過如何將庫存最佳化,但鮮少有學者探討,如何於導入外部資源,打破傳統柏拉圖前緣(Pareto Frontier)之限制,將庫存、利潤以及人力成本推向渴望水準(Aspired Level)。為達此目標,本研究將導入可變空間理論,透過增加預算、改善目標參數與提昇生產效率三種方式,推導渴望水準。本研究以全球主要飛機發動機修護公司之個案為例,實證本分析模式之可行性。分析之結果,除可供該公司將庫存水準最佳化之用。成功驗證的模型,亦可作為其他產業庫存最佳化之用。

    During the past years, civic aviation industry grew rapidly. To fulfill the rapid growth of the civic aviation industry, major airlines have purchased more aircraft to fulfill the market needs. Due to the rapid growth of the aircraft numbers, the requirements for engine maintenance increased rapidly. In order to fulfill the needs of engine maintenance, the repair shop must optimize the inventory of parts and materials so as to cope with the engines to be maintained. Although numerous scholars have discussed issues being related to inventory management and optimization, very few scholars have tried to explore how to the inventory can be optimized by introducing external resources, breaking the Pareto Frontier, and reaching the aspired level by optimizing profit and manpower. To fulfill the purpose, the changeable space theory was introduced through increasing budgets, improving objective coefficients; and upgrading production efficiency. An empirical study based on one of the world’s leading engine repair shops was introduced to demonstrate the feasibility of the proposed analytic models. The well-verified analytic models can serve as the basis for the inventory management of the engine repair shop. The changeable space programming based models can also be adopted by inventory management of other industries.

    致謝 i 摘要 ii Abstract iii Table of Contents iv List of Figure vi List of Table vii Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Research Motivation 2 1.3 Research Objectives 3 1.4 Research Procedure 4 1.5 Research Contributions and Limitations 5 Chapter 2 Literature Review 7 2.1 Aircraft Engine Maintenance 7 2.2 Inventory Management 11 2.3 Inventory Optimization 13 Chapter 3 Research Methods 17 3.1 Multi-Objective Decision Making 17 3.2 De Novo Programming 18 3.3 Changeable Space Programming 23 Chapter 4 Optimizing Inventory Process 29 4.1 Solving Three Single Objects 33 4.2 Multi-Object Module by De Novo Programming 41 4.3 Multi-Object Module by Changeable Space 45 4.4 Optimizing Inventory based on Changeable Space 51 Chapter 5 Discussion 55 Chapter 6 Conclusion 59 Reference 61

    An, B.-G., Fotopoulos, S. B., & Wang, M.-C. (1989). Estimating the lead-time demand distribution for an autocorrelated demand by the pearson system and a normal approximation. Naval Research Logistic, 36(4), 463-477.

    Bing, C., Shouqun, S., & Gang, L. (2012). An optimized unbiased GM (1, 1) power model for forecasting MRO spare parts inventory. Modern Applied Science, 6.

    Boylan, J. E. (2018). Commentary on retail forecasting. International Journal of Forecasting, 34(4), 832-834.

    Braglia, M. (2004). Multi‐attribute classification method for spare parts inventory management. Journal of Quality in Maintenance Engineering, 10(1), 55-65.

    Budd, L., & Ison, S. (2017). The role of dedicated freighter aircraft in the provision of global airfreight services. Journal of Air Transport Management, 61, 34-40.

    Chatfield, D., & Pritchard, A. (2013). Returns and the bullwhip effect. Transportation Research Part E: Logistics and Transportation Review, 49, 159–175.

    Chianglin, C. Y., Lai, T. C., & Yu, P. L. (2007). Linear pogramming mdels with changeable parameters — theoretical analysis on "Taking loss at the ordering time and making profit at the delivery time". International Journal of Information Technology & Decision Making, 6(4), 577-598.

    Chou, C. C. (2009). Fuzzy economic order quantity inventory model. International Journal of Innovative Computing, Information and Control, 5, 2585-2592.

    Chu, Y., You, F., Wassick, J. M., & Agarwal, A. (2015). Simulation-based optimization framework for multi-echelon inventory systems under uncertainty. Computers & Chemical Engineering, 73, 1-16.

    Cohen, M. A., & Pekelman, D. (1978). LIFO inventory systems. Management Science, 24(11), 1150-1162. doi:10.1287/mnsc.24.11.1150

    Derman, C., & Klein, M. (1958). Inventory depletion management. Pereshable Inventory Systems, 4(4), 450-456. doi:10.1287/mnsc.4.4.450

    Dijkstra, M. C., Kroon, L. G., van Nunen, J. A. E. E., & Salomon, M. (1991). A DSS for capacity planning of aircraft maintenance personnel. International Journal of Production Economics, 23(1), 69-78.

    Dvoretzky, A., Kiefer, J., & Wolfowitz, J. (1952). The inventory problem: II. case of unknown distributions of demand. Econometrica, 20(3), 450-466. doi:10.2307/1907414
    Fildes, R. (1992). The evaluation of extrapolative forecasting methods. International Journal of Forecasting, 8(1), 81-98.

    Flynn, D., & Koornhof, C. (2005). Fundamental Accounting. South Africa: Juta, Limited.

    Fotopoulos, S., Wang, M.-C., & Rao, S. S. (1988). Safety stock determination with correlated demands and arbitrary lead times. European Journal of Operational Research, 35(2), 172-181.

    García-Nieto, P. J., García-Gonzalo, E., Sánchez Lasheras, F., & de Cos Juez, F. J. (2015). Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines

    and evaluation of its reliability. Reliability Engineering & System Safety, 138, 219-231.

    Ghobbar, A. A., & Friend, C. H. (2004). Forecasting intermittent demand for aircraft spare parts: A comparative evaluation of methods. Journal of Aircraft, 41(3), 665-673.
    doi:10.2514/1.851

    Halim, K., Giri, B. C., & Chaudhuri, K. (2008). Fuzzy economic order quantity model for perishable items with stochastic demand, partial backlogging and fuzzy deterioration rate. International Journal of Operational Research, 3. doi:10.1504/IJOR.2008.016155

    Harris, F. W. (1913). How many parts to make at once. Factory, The Magazine of Management,, 10(2), 135-136.

    Hausman, W. H., Lee, H. L., & Zhang, A. X. (1998). Joint demand fulfillment probability in a multi-item inventory system with independent order-up-to policies. European Journal of Operational Research, 109(3), 646-659.

    Hausman, W. H., & Scudder, G. D. (1982). Priority scheduling rules for repairable inventory systems. Management Science, 28(11), 1215-1232.

    Hochmuth, C. A., & Köchel, P. (2012). How to order and transship in multi-location inventory systems: The simulation optimization approach. International Journal of Production Economics, 140(2), 646-654.

    Huang, J. J., & Tzeng, G. H. (2014). New thinking of multi-objective programming with changeable space – In search of excellence. Technological and Economic Development of Economy, 20.

    Huiskonen, J. (2001). Maintenance spare parts logistics: Special characteristics and strategic choices. International Journal of Production Economics, 71(1), 125-133.

    Hwang, C. L., Paidy, S. R., Yoon, K., & Masud, A. S. M. (1980). Mathematical programming with multiple objectives: A tutorial. Computers & Operations Research, 7(1), 5-31.

    Jadhav, O., & Bodkhe, S. (2010). Multi-objective inventory model of deteriorating items with fuzzy inventory cost and some fuzzy constraints. International Journal of Agricultural and Statistics Sciences, 6, 529-538.

    Jessop, S., Valentine, S., & Roemer, M. (2008). CBM Integrated Maintenance Scheduler (Vol. 7). Berlin, Germany: The American Society of Mechanical Engineers.

    Köchel, P., & Nieländer, U. (2005). Simulation-based optimisation of multi-echelon inventory systems. International Journal of Production Economics, 93-94, 505-513.

    Kölker, K., Bießlich, P., & Lütjens, K. (2016). From passenger growth to aircraft movements. Journal of Air Transport Management, 56, 99-106.

    Kacprzyk, J., & Stanieski, P. (1982). Long-term inventory policy-making through fuzzy decision-making models. Fuzzy Sets and Systems, 8, 117–132. doi:10.1016/0165-0114(82)90002-1

    Kareem, B., & Lawal, A. S. (2015). Spare parts failure prediction of an automobile under criticality condition. Engineering Failure Analysis, 56, 69-79.

    Kazemi, M., & Nourelfath, M. (2014). Integrated spare parts logistics and operations planning for maintenance service providers. International Journal of Production Economics, 158, 44-53.

    Keivanpour, S., & Kadi, D. A. (2015). A sustainable approach to Aircraft Engine Maintenance. IFAC-PapersOnLine, 48(3), 977-982.

    Kilpi, J., & Vepsäläinen, A. P. J. (2004). Pooling of spare components between airlines. Journal of Air Transport Management, 10(2), 137-146.

    Kleeman, M., & Lamont, G. (2005). Solving the Aircraft Engine Maintenance Scheduling Problem Using a Multi-objective Evolutionary Algorithm.

    Kuhn, H. W., & Tucker, A. W. (1951, 1951). Nonlinear Programming. Paper presented at the Second Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, C.A.
    Latorella, K. A., & Prabhu, P. V. (2000). A review of human error in aviation maintenance and inspection. International Journal of Industrial Ergonomics, 26(2), 133-161.

    Lee, Y.-M., Mu, S., Shen, Z., & Dessouky, M. (2014). Issuing for perishable inventory management with a minimum inventory volume constraint. Computers & Industrial Engineering, 76, 280-291.

    Li, Z., & Fu, Q. (2017). Robust inventory management with stock-out substitution. International Journal of Production Economics, 193, 813-826.

    Lian, Z., & Liu, L. (1999). A discrete‐time model for perishable inventory systems. Annals of Operations Research, 87, 103-116. doi:10.1023/A:1018960314433

    Lian, Z., & Liu, L. (2001). Continuous review perishable inventory systems: Models and heuristics. IIE Transactions, 33, 809-822. doi:10.1080/07408170108936874

    Lin, X., Basten, R. J. I., Kranenburg, A. A., & van Houtum, G. J. (2017). Condition based spare parts supply. Reliability Engineering & System Safety, 168, 240-248.

    Liu, X., & An, S. (2014). Failure propagation analysis of aircraft engine systems based on complex network. Procedia Engineering, 80, 506-521.

    M. Bolstad, W. (1986). An efficient algorithm for Harrison-Stevens forecasting using the multi-process multivariate dynamic linear model. Communications in Statistics - Simulation and Computation, 15, 819-828. doi:10.1080/03610918608812544

    Mahata, G., & Goswami, A. (2009). A fuzzy replenishment policy for deteriorating items with ramp type demand rate under inflation. International Journal of Operational Research, 5(3), 328-348. doi:10.1504/IJOR.2009.025200

    Marais, K. B., & Robichaud, M. R. (2012). Analysis of trends in aviation maintenance risk: An empirical approach. Reliability Engineering & System Safety, 106, 104-118.

    Mokhtari, H. (2018). Joint ordering and reuse policy for reusable items inventory management. Sustainable Production and Consumption, 15, 163-172.

    Nagare, M., & Dutta, P. (2012). On solving single-period inventory model under hybrid uncertainty. International Journal of Economics and Management Science, 6, 290-295.

    Nemtajela, N., & Mbohwa, C. (2017). Relationship between Inventory Management and Uncertain Demand for Fast Moving Consumer Goods Organisations. Procedia Manufacturing, 8, 699-706.

    Panigrahi, A. K. (2013). Relationship between inventory management and profitability: An empirical analysis of Indian cement companies. Asia Pacific Journal of Marketing & Management Review, 2(7), 107-120.

    Patriarca, R., Costantino, F., Di Gravio, G., & Tronci, M. (2016). Inventory optimization for a customer airline in a performance based contract. Journal of Air Transport Management, 57, 206-216.

    Petrovic, D., & Sweeney, E. (1994). Fuzzy knowledge-based approach to treating uncertainty in inventory control. Computer Integrated Manufacturing Systems, 7(3), 147-152.

    Pierskalla, W., & D. Roach, C. (1972). Optimal issuing policies for perishable inventory. Management Science, 18, 603-614. doi:10.1287/mnsc.18.11.603

    Prak, D., & Teunter, R. (2019). A general method for addressing forecasting uncertainty in inventory models. International Journal of Forecasting, 35(1), 224-238.

    Pyke, D., Peterson, R., & Silver, E. (2001). Inventory management and production planning and scheduling (Third Edition). Journal of The Operational Research Society - J OPER RES SOC, 52, 845-845.

    Ramudhin, A., Paquet, M., Artiba, A., Dupré, P., Varvaro, D., & Thomson, V. (2008). A generic framework to support the selection of an RFID-based control system with application to the MRO activities of an aircraft engine manufacturer. Production Planning & Control, 19(2), 183-196.
    doi:10.1080/09537280801896706

    Ravish Yadav, D. (2016). Modeling for inventory with exponential declining demand, variable deterioration, linear Hholding cost and inflation without shortages”. IOSR Journal of

    Mathematics, 12, 36-43. doi:10.9790/5728-1204033643
    Reményi, C., & Staudacher, S. (2014). Systematic simulation based approach for the identification and implementation of a scheduling rule in the aircraft engine maintenance. International Journal of Production Economics, 147, 94-107.

    Sanni, S., & O'Neill, B. (2019). Inventory optimisation in a three-parameter Weibull model under a prepayment system. Computers & Industrial Engineering, 128, 298-304.

    Scarf, H. E. (1957). A min-max solution of an inventory problem. In. Santa Monica, C.A: Rand Corp.

    Sherbrooke, C. C. (1968). Discrete compound poisson processes and tables of the geometric poisson distribution. Naval Research Logistics, 15(2), 189-203. doi:10.1002/nav.3800150206

    Shi, Y. (1995). Studies on optimum-path ratios in multicriteria De Novo programming problems. Computers & Mathematics with Applications, 29(5), 43-50.

    Shin, H., Park, S., Lee, E., & Benton, W. C. (2015). A classification of the literature on the planning of substitutable products. European Journal of Operational Research, 246(3), 686-699.

    Steenhuis, H.-J., & de Bruijn, E. J. (2001). Developing countries and the aircraft industry: match or mismatch? Technology in Society, 23(4), 551-562.

    Strijbosch, L. W. G., Heuts, R. M. J., & van der Schoot, E. H. M. (2000). A combined forecast—inventory control procedure for spare parts. Journal of the Operational Research Society, 51(10), 1184-1192. doi:10.1057/palgrave.jors.2601013

    Sun, Y., Chen, X., Ren, H., Jin, Y., & Liu, Q. (2016). Ordering decision-making methods on spare parts for a new aircraft fleet based on a two-sample prediction. Reliability Engineering & System Safety, 156, 40-50.

    Syed, J. K., & Aziz, L. A. (2007). Fuzzy inventory model without shortages using signed distance method. Applied Mathematics & Information Sciences, 1(2), 203-209.

    Teng, J. Y., & Tzeng, G. H. (1996). Fuzzy multicriteria ranking of urban transportation investment alternatives. Transportation Planning and Technology, 20(1), 15-31.
    doi:10.1080/03081069608717577

    Transchel, S. (2017). Inventory management under price-based and stockout-based substitution. European Journal of Operational Research, 262(3), 996-1008.

    Tsai, Y.-T., Wang, K.-S., & Teng, H.-Y. (2001). Optimizing preventive maintenance for mechanical components using genetic algorithms. Reliability Engineering & System Safety, 74(1), 89-97.

    Tzeng, G., Huang, K., Lin, C., & Yuan, B. J. C. (2014, 27-31 July 2014). New idea of multi-objective programming with changeable spaces for improving the unmanned factory planning. Paper presented at the PICMET '14 conference: Portland international center for management of engineering and technology; infrastructure and service integration.

    Van Horenbeek, A., Buré, J., Cattrysse, D., Pintelon, L., & Vansteenwegen, P. (2013). Joint maintenance and inventory optimization systems: A review. International Journal of Production Economics, 143(2), 499-508.

    van Jaarsveld, W., Dollevoet, T., & Dekker, R. (2015). Improving spare parts inventory control at a repair shop. Omega, 57, 217-229.

    Wang, X., Tang, W., & Zhao, R. (2007). Fuzzy economic order quantity inventory models without backordering. Tsinghua Science & Technology, 12(1), 91-96.

    Weiss, C. H. (1980). Knowledge creep and decision accretion. SAGE Journals, 1(3), 381-404. doi:10.1177/107554708000100303

    West, M., Harrison, P. J., & Migon, H. S. (1985). Dynamic generalized linear models and bayesian forecasting. Journal of the American Statistical Association, 80(389), 73-83.
    doi:10.1080/01621459.1985.10477131

    Whitin, T. M. (1952). Inventory control in theory and practice. The Quarterly Journal of Economics, 66(4), 502-521. doi:10.2307/1882101

    Xu, S. X., Lu, Q., & Li, Z. (2012). Optimal modular production strategies under market uncertainty: A real options perspective. International Journal of Production Economics, 139(1), 266-274.

    Yan, S., Yang, T.-H., & Chen, H.-H. (2004). Airline short-term maintenance manpower supply planning. Transportation Research Part A: Policy and Practice, 38(9), 615-642.

    Yu, P. L., & Chianglin, C. Y. (2006). Decision traps and competence dynamics in changeable spaces. International Journal of Information Technology and Decision Making, 05(01), 5-18. doi:10.1142/s0219622006001903

    Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.

    Zeleny, M. (1981). On the squandering of resources and profits via linear programming. Interfaces, 11(5), 101-107.

    Zeleny, M. (1982). Multi criteria decision making. McGraw-Hills, New York.

    Zeleny, M. (1990). Optimizing given systems vs. designing optimal systems : The De Novo programming approach. International Journal of General Systems, 17(4), 295-307.
    doi:10.1080/03081079008935113

    無法下載圖示 本全文未授權公開
    QR CODE