簡易檢索 / 詳目顯示

研究生: 邱鴻錦
CHIU HUNG-CHIN
論文名稱: 半導體光子晶體光電性質之研究
Studies of Photonic Properties in Semiconductor-Dielectric Photonic Crystals
指導教授: 吳謙讓
Wu, Chien-Jang
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 50
中文關鍵詞: 光子晶體半導體光子晶體
英文關鍵詞: Photonic Crystals, Semiconductor-Dielectric Photonic Crystals
論文種類: 學術論文
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對含有摻雜半導體的半導-介電光子晶體(SDPC)作理論性的研究。以轉移矩陣法來運算GaAs光子晶體的透射率。
    在半導-介電光子晶體,介電係數和半導體內的溫度、壓力、載子密度有強相關,可以藉由這些因素來調整介電係數由正值到負值。
    第一個部分是研究溫度、壓力、載子密度對1維GaAs/air光子晶體產生的能隙影響。
    第二個部分是研究負介電係數在N層的1維GaAs/air光子晶體的情形,可發現在能隙上有N-1個頻道可通過。
    第三個部分是研究以GaAs為缺陷之Si/SiO2光子晶體的光子能隙,可發現此缺陷有多個通過峰值出現在能隙上。

    This dissertation is theoretically devoted to the studies of photonic properties in the semiconductor-dielectric photonic crystal (SDPC) containing a doped semiconductor. The theoretical simulation results obtained by transfer-matrix method (TMM) are to show the transmittance in GaAs-based photonic crystal structure.
    In SDPC, the permittivity of semiconductor is strongly dependent on temperature, pressure, and density of free carrier. These dependences can cause the permittivity to be either positive or negative at a certain frequency range. The first topic is to study pressure, temperature and plasma frequency effects on the band structure of 1D semiconductor photonic crystal made of alternating layers of air and GaAs. The second topic is to study the negative permittivity in 1D finite semiconductor photonic crystal made of alternating layers of air and GaAs with N being the number of periods. It is found the number of channels in the pass band of photonic crystal is equal to N-1. The third topic is to study the properties of photonic band gaps in Si/SiO2 photonic crystals and the photonic defect modes in the Si/SiO2 photonic structures with GaAs defects. It is found that there are multiple transmission peaks within the photonic band gap (PBG) as the defects.

    摘要(Abstract).........................................Ⅰ 致謝...................................................Ⅲ 目錄...................................................IV 表目錄..................................................VI 圖目錄.................................................VII 第一章 緒論 .........................................1 1-1 半導體(Semiconductors) ..........................1 1-2 光子晶體(Photonic crystals) .....................2 1-3 半導體-介電光子晶體 (Semiconductor-dielectric PC) ...4 1-4 半導體介電係數 ....................................4 第二章 一維砷化鎵光子晶體之光子能隙分析 .................6 2-1 簡介 .............................................6 2-2 基本方程式 ........................................7 2-3 數值結果與討論 ....................................10 2-4 結論 .............................................23 第三章 一維砷化鎵光子晶體在負介電常數範圍之頻譜分析 .......24 3-1 簡介.................................................24 3-2 基本方程式 ........................................25 3-3 數值結果與討論 .....................................27 3-4 結論 ..............................................33 第四章 一維光子晶體之砷化鎵缺陷模態分析 ...................35 4-1 簡介 ..............................................35 4-2 基本方程式 .........................................37 4-3 數值結果與討論 ......................................40 4-4 結論 ...............................................45 第五章 結論 ............................................46 參考文獻 ...............................................48

    [1] E. Yablonovitch et. al. “Inhibited Spontaneous Emission
    in Solid-state Physics and Electronics,” Phys. Rev.
    Lett. ,Vol. 58, pp. 2059 (1987)
    [2] S. John et. al. “Strong localization of photons in
    certain disordered dielectricsuper lattices,” Phys. Rev.
    Lett. ,Vol. 58, pp. 2486 (1987)
    [3] E. Yablonovitch, “Photonic crystals: semiconductor of
    light,’’ Scientific American December, 47 (2001).
    [4] J. D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic
    Crystals (Princeton Unversity Press, Princeton, NJ,
    1995, http://ab-initio.mit.edu/book/.
    [5] E. Yablonovitch., “Inhibited spontaneous emission in
    solid state physics and electronics, ’’ Phys. Rev.
    Lett., Vol. 58, 2059-2062,1987.
    [6] S. John, “Strong localization of photons in certain
    disorderedlattices, ’’ Phys. Rev. Lett., Vol. 58,
    2486{2489, 1987.
    [7] J. D. Joannopoulos, R. D. Meade, and J. N. Winn,
    PhotonicCrystals: Molding the Flow of Light, Princeton
    University Press,Princeton, NJ, 1995.
    [8] K. Sakoda, Optical Properties of Photonic Crystals,
    Springer-Verlag, Berlin, 2001.
    [9] S. J. Orfanidis, Electromagnetic Waves and Antennas,
    RutgerUniversity,2008.www.ece.rutgers.edu/ orfanidi/ewa.
    [10] T. Krauss et.al“Two-dimensional photonic-bandgap
    structures operating at near infrared wavelength,”
    Nature 383, 699-702 (1996).
    [11] T. A. Birks, J. G. Knight, P. S. Russel, “Endlessly
    single-mode photonic crystal
    fiber,”Opt.Lett.,22(13).961~963(1997)
    [12] S.M. Sze, SEMICONDUCTOR DEVICES: Physics and
    Technology, 3rd ,Wiley,(1983)
    [13] P. Yeh, Optical Waves in Layered Media, Wiley, New
    York, 1988.
    [14] C.-J. Wu, et. al. “Photonic band structure for a
    superconducting-dielectric superlattice,” Physica C,
    432,133-139,(2005)
    [14] W.-H. Lin, C.-J. Wu, et. al. “Terahertz multichanneled
    filter in a superductimg photonic crystal, ” Optics
    Express, 18,27155-27166,(2010).
    [16] L. E. Gonzolez and N. Porras-Montenegro, Physica. E.,
    44, 773 (2012).
    [17] G. A. Samara, Physical Review Lett.,90, 083901(2003)
    [18] A.M. Elabsy , Physica Scripta 48, 376 (1993)
    [19] N. Ashcroft. et. al., Introduction to Solid State
    Physics, 5th ed.,Wiley,(1976)
    [20]Y. Fink., et. al., “A dielectric omnidirectional
    reflector, ” Science.Vol.282,1679-1682,(1998)
    [21] J. N.Winn. , et. al., “Omnidirectional reflection from
    a one-dimensional photonic crystal, ” Optics Lett.,
    Vol.23,1573-1575,(1998)
    [22] V. G. Veselago, “The electrodynamics of substances with
    simultaneously negative values of ε andμ ,” Sov. Phys.
    Usp. 10, No.4, pp.509-514, (1968)
    [23] J. B. Pendry, A. J. Holden, W. J. Stewart and I.
    Youngs, “Extremely Low Frequency Plasmons in Metallic
    Mesostructures,” Phys. Rev. Lett. 76 , Issue
    25, pp.4773,( 1996)
    [24] S. A. Ramakrishna, “Physics of negative refraction
    index materials,” Rep.Prog. Phys. 68, pp.449-521,(
    2005)
    [25] J.B. Pendry, A.J. Holden, W.J. Stewart, and I. Youngs,
    Phys. Rev. Lett. 76, 4773 (1996);J.B. Pendry, A.J.
    Holden, D.J. Robbins, andW.J. Stewart, J. Phys.:
    Condens. Matter 10,4785 (1998).
    [26] D.R. Smith, S. Schultz, N. Kroll, M. Sigalas,K.M. Ho,
    and C.M. Soukoulis, Appl. Phys.Lett. 65, 645 (1994).
    [27] E. Yablonovitch et. al. “Donor and Acceptor Modes in
    Photonci Band Structure,” Phys. Rev. Lett. 67(24),
    3380 (1991);
    [28] S. G. Johnson,http://ab-initio.mit.edu/photons/tutorial
    [29] K. Tong, W.-W. Cui, G.-H. Yan, and Z.-Q. Li,
    Optoelectron. Lett., 3, 0444(2007).

    無法下載圖示 本全文未授權公開
    QR CODE