簡易檢索 / 詳目顯示

研究生: 黃聖樺
Huang, Sheng-Hua
論文名稱: ZnTPyP 自組裝超分子奈米結構應用於醋酸氣體感測
ZnTPyP self-assembly supramolecular nano material applied in acetic acid gas sensing
指導教授: 呂家榮
Lu, Chia-Jung
口試委員: 呂家榮
Lu, Chia-Jung
陳重佑
Chen, Chong-You
劉茂煌
Liu, Mao-Huang
口試日期: 2024/06/21
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 88
中文關鍵詞: 氣體偵測器醋酸自組裝超分子
英文關鍵詞: Gas Sensor, Acetic Acid, Self-Assembly, Supramolecular
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202400721
論文種類: 學術論文
相關次數: 點閱:153下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用界面活性劑溴化十六烷基三甲銨 (CTAB) 促使四吡啶基鋅卟啉 (ZnTPyP) 發生自組裝合成超分子奈米結構。接著我們比較了 ZnTPyP 微米晶體 (ZnTPyP micro crystal) 與奈米結構 (Nano material) 之氣體反應差異,並將其應用於醋酸氣體感測。ZnTPyP 之微米晶體與奈米結構皆能以穩定的形式存在溶液中,並透過 UV-Vis、SEM、TEM 及 XRD 確認結構的生成,在本實驗中將溶液滴覆於黃金指叉電極上,待其乾燥後再固定於 IC 底座上,並連接 LCR Meter 進行不同氣體之電抗測量。
    本研究對 15 種揮發性有機氣體進行電抗之量測,其中發現在二甲基甲醯胺 (Dimethylformamide, DMF) 及醋酸 (Acetic acid, AcOH) 具有良好的選擇性,而對其他氣體之反應較不明顯,並且在低濃度區擁有顯著的線性趨勢 (R2>0.99),以及良好的再現性和穩定性,透過計算後奈米結構對於醋酸的偵測下限可達 14 ppm。比較材料之反應訊號圖可以看出奈米結構的反應性優於 ZnTPyP 微米晶體,因利用界面活性劑使材料達到奈米化,使氣體易脫附於材料,因此,反應更加穩定,進而達到更低的偵測下限及穩定性。

    This study utilized the surfactant cetyltrimethylammonium bromide (CTAB) to induce the self-assembly of Zn(II) meso-Tetra(4-pyridyl) Porphine (ZnTPyP) into supramolecular nano structures. Subsequently, we compared the gas response differences between ZnTPyP micro crystal and nano material, and applied them to acetic acid gas sensing. Both ZnTPyP micro crystal and nano material could exist in solution in a stable form, and their structures were confirmed through UV-Vis, SEM, TEM, and XRD analyses. In this experiment, the solution was drop-casted onto gold interdigital electrodes, dried, then fixed on an IC base, and connected to an LCR Meter for gas reactance measurements.
    We conducted gas reactance measurements on 15 different volatile organic gases (VOCs), and found promising selectivity for dimethylformamide (DMF) and acetic acid (AcOH), with less pronounced responses to other gases. Notably, significant linear trends (R2 > 0.99), reproducibility, and stability were observed in the low concentration range. Nano material exhibited a detection limit of 14 ppm for acetic acid. Comparing the reaction signal graphs of the material, it demonstrates that the nano material exhibits superior reactivity compared to ZnTPyP micro crystal. This is due to the use of surfactants to achieve nano conformation, which facilitates gas desorption from the material, resulting in a more stable reaction, a lower detection limit, and improved stability.

    中文摘要 i Abstract ii 目錄 iv 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 前言與研究動機 1 1.2 超分子的起源與定義 3 1.2.1 自組裝 4 1.2.2 分子摺疊 5 1.2.3 主客體化學 6 1.2.4 機械互鎖結構分子 7 1.2.5 氫鍵 9 1.2.6 𝜋-𝜋 作用力 10 1.3 ZnTPyP介紹 11 1.4 電阻、電抗、電感、電容等基本觀念 14 1.4.1 電阻 14 1.4.2 電抗 15 1.4.3 電感 16 1.4.4 電容 17 1.5 氣體偵測器的介紹 19 1.5.1 電阻式 19 1.5.2 電容式 21 1.6 研究目的 22 第二章 實驗部分 23 2.1 實驗藥品、器材與儀器設備 23 2.1.1 實驗藥品 23 2.1.2 實驗器材 24 2.1.3 儀器設備 25 2.2 ZnTPyP 微米晶體及奈米結構溶液之製備 29 2.3 偵測器之製作過程 31 2.3.1 指叉電極規格及清洗 31 2.3.2 底座的製作 31 2.3.3 薄膜製作 34 2.4 氣體生成系統說明 36 2.4.1 吸附劑種類 38 2.5 LabVIEW程式之應用 39 2.5.1 LCR Meter 之數據紀錄 40 2.5.2 數據平滑功能 41 2.5.3 響應值之計算 43 2.5.4 電磁閥之轉向切換 44 2.6 有機氣體訊號處理 45 2.6.1 LCR Meter 參數設定 45 第三章 結果與討論 47 3.1 ZnTPyP 微米晶體及奈米結構之結構分析 47 3.1.1 SEM 及 TEM 47 3.1.2 XRD 49 3.1.3 UV-Vis 51 3.2 儀器測量之參數選擇 53 3.2.1 阻抗中電阻及電抗所佔之比例 55 3.2.2 電抗與電容換算 57 3.3 氣體選擇性 58 3.3.1 不同氣體下之響應值 58 3.3.2 有效氣體之檢量線 62 3.3.3 有效氣體之再現性與重複性 69 3.4 反應機制 73 3.4.1 氣體物理性質之討論 73 第四章 結論 78 參考文獻 79

    陳昱銓. 奈米銀光學感測器之表面修飾與氣體選擇性研究暨微機電-氣體樣品前濃縮裝置之自動化系統建立. 輔仁大學, 新北市, 2008.
    Herberger, S.; Herold, M.; Ulmer, H.; Burdack-Freitag, A.; Mayer, F. Detection of human effluents by a MOS gas sensor in correlation to VOC quantification by GC/MS. Building and Environment 2010, 45 (11), 2430-2439.
    Khatib, M.; Haick, H. Sensors for Volatile Organic Compounds. ACS Nano 2022, 16 (5), 7080-7115.
    Pargoletti, E.; Hossain, U. H.; Di Bernardo, I.; Chen, H.; Tran-Phu, T.; Lipton-Duffin, J.; Cappelletti, G.; Tricoli, A. Room-temperature photodetectors and VOC sensors based on graphene oxide–ZnO nano-heterojunctions. Nanoscale 2019, 11 (47), 22932-22945.
    Hu, X.; Yang, W. Planar capacitive sensors – designs and applications. Sensor Review 2010, 30 (1), 24-39.
    Terzic, E.; Terzic, J.; Nagarajah, R.; Alamgir, M. A Neural Network Approach to Fluid Quantity Measurement in Dynamic Environments; Springer: London, 2012; 11-37.
    Singh, S.; Deb, J.; Kumar, S.; Sarkar, U.; Sharma, S. Selective N,N-Dimethylformamide Vapor Sensing Using MoSe2/Multiwalled Carbon Nanotube Composites at Room Temperature. ACS Applied Nano Materials 2022, 5 (3), 3913-3924.
    Chen, Q.; Li, J.; Fu, W.; Yang, Y.; Zhu, W.; Zhang, J. Detection of N,N-dimethylformamide vapor down to ppb level using electrospun InYbO nanofibers field-effect transistor. Sensors and Actuators B: Chemical 2020, 323, 128676-128685.
    Singh, S.; Saggu, I. S.; Singh, S.; Kumar, N.; Chen, K.; Xuan, Z.; Gupta, R.; Swihart, M. T.; Sharma, S. Detection of DMF and NH3 at Room Temperature Using a Sensor Based on a MoS2/Single-Walled Carbon Nanotube Composite. ACS Applied Nano Materials 2023, 6 (12), 10698-10712.
    Wang, Y.-C.; Sun, Z.-S.; Wang, S.-Z.; Wang, S.-Y.; Cai, S.-X.; Huang, X.-Y.; Li, K.; Chi, Z.-T.; Pan, S.-D.; Xie, W.-F. Sub-ppm acetic acid gas sensor based on In2O3 nanofibers. Journal of Materials Science 2019, 54 (22), 14055-14063.
    Zhang, Y.; Liu, J.; Chu, X.; Liang, S.; Kong, L. Preparation of g–C3N4–SnO2 composites for application as acetic acid sensor. Journal of Alloys and Compounds 2020, 832, 153355-153362.
    Turemis, M.; Zappi, D.; Giardi, M. T.; Basile, G.; Ramanaviciene, A.; Kapralovs, A.; Ramanavicius, A.; Viter, R. ZnO/polyaniline composite based photoluminescence sensor for the determination of acetic acid vapor. Talanta 2020, 211, 120658-12066.
    Cao, X.; Gao, A.; Hou, J.-t.; Yi, T. Fluorescent supramolecular self-assembly gels and their application as sensors: A review. Coordination Chemistry Reviews 2021, 434, 123792-123825.
    Praveen, V. K.; Vedhanarayanan, B.; Mal, A.; Mishra, R. K.; Ajayaghosh, A. Self-Assembled Extended π-Systems for Sensing and Security Applications. Accounts of Chemical Research 2020, 53 (2), 496-507.
    Wolf, Κ. L.; Prahm, H.; Harms, H. Über den Ordnungszustand der Moleküle in Flüssigkeiten. Zeitschrift für Physikalische Chemie 1937, 36B (1), 237-287.
    Lehn, J. M. Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture). Angewandte Chemie International Edition in English 2003, 27 (1), 89-112.
    Whitesides, G. M.; Grzybowski, B. Self-Assembly at All Scales. Science 2002, 295 (5564), 2418-2421.
    Feng, H.-T.; Lam, J. W. Y.; Tang, B. Z. Self-assembly of AIEgens. Coordination Chemistry Reviews 2020, 406, 213142-213155.
    McManus, J. J.; Charbonneau, P.; Zaccarelli, E.; Asherie, N. The physics of protein self-assembly. Current Opinion in Colloid & Interface Science 2016, 22, 73-79.
    Onuchic, J. N.; Wolynes, P. G. Theory of protein folding. Current Opinion in Structural Biology 2004, 14 (1), 70-75.
    NÖlting, B.; Andert, K. Mechanism of protein folding. Proteins: Structure, Function, and Genetics 2000, 41 (3), 288-298.
    Dobson, C. M. Protein folding and misfolding. Nature 2003, 426 (6968), 884-890.
    Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. Journal of the American Chemical Society 2002, 89 (10), 2495-2496.
    Pedersen, C. J. The discovery of crown ethers. Science 1988, 241 (4865), 536-540.
    Cram, D. J. The Design of Molecular Hosts, Guests, and Their Complexes. Science 1988, 240 (4853), 760-767.
    The Nobel Prize in Chemistry, 1987.https://www.nobelprize.org/prizes/chemistry/1987/summary/
    Sauvage, J. P. From Chemical Topology to Molecular Machines (Nobel Lecture). Angewandte Chemie International Edition 2017, 56 (37), 11080-11093.
    Stoddart, J. F. Mechanically Interlocked Molecules (MIMs)—Molecular Shuttles, Switches, and Machines (Nobel Lecture). Angewandte Chemie International Edition 2017, 56 (37), 11094-11125.
    Feringa, B. L. The Art of Building Small:  From Molecular Switches to Molecular Motors. The Journal of Organic Chemistry 2007, 72 (18), 6635-6652.
    The Nobel Prize in Chemistry, 2016.https://www.nobelprize.org/prizes/chemistry/2016/prize-announcement/
    郭修甫. 分子間作用力. 科學Online 2013.https://highscope.ch.ntu.edu.tw/wordpress/?p=48196
    夏菲; 王宙; 郭培培; 陳俏. 氫鍵對物質結構和性質的影響及其應用前景. 西北大學, 陝西省西安市, 2016.
    Dougherty, D. A. Cation-π Interactions in Chemistry and Biology: A New View of Benzene, Phe, Tyr, and Trp. Science 1996, 271 (5246), 163-168.
    Thakuria, R.; Nath, N. K.; Saha, B. K. The Nature and Applications of π–π Interactions: A Perspective. Crystal Growth & Design 2019, 19 (2), 523-528.
    Bai, F.; Sun, Z.; Wu, H.; Haddad, R. E.; Coker, E. N.; Huang, J. Y.; Rodriguez, M. A.; Fan, H. Porous One-Dimensional Nanostructures through Confined Cooperative Self-Assembly. Nano Letters 2011, 11 (12), 5196-5200.
    Drain, C. M.; Varotto, A.; Radivojevic, I. Self-Organized Porphyrinic Materials. Chemical Reviews 2009, 109 (5), 1630-1658.
    Hu, J.-S.; Guo; Liang, H.-P.; Wan, L.-J.; Jiang, L. Three-Dimensional Self-Organization of Supramolecular Self-Assembled Porphyrin Hollow Hexagonal Nanoprisms. Journal of the American Chemical Society 2005, 127 (48), 17090-17095.
    Qiu, Y.; Chen, P.; Liu, M. Evolution of Various Porphyrin Nanostructures via an Oil/Aqueous Medium: Controlled Self-Assembly, Further Organization, and Supramolecular Chirality. Journal of the American Chemical Society 2010, 132 (28), 9644-9652.
    Hasobe, T.; Sakai, H.; Mase, K.; Ohkubo, K.; Fukuzumi, S. Remarkable Enhancement of Photocatalytic Hydrogen Evolution Efficiency Utilizing An Internal Cavity of Supramolecular Porphyrin Hexagonal Nanocylinders Under Visible-Light Irradiation. The Journal of Physical Chemistry C 2013, 117 (9), 4441-4449.
    Song, F.; Ma, P.; Chen, C.; Jia, J.; Wang, Y.; Zhu, P. Room temperature NO2 sensor based on highly ordered porphyrin nanotubes. Journal of Colloid and Interface Science 2016, 474, 51-57.
    Cai, W.-R.; Zhang, G.-Y.; Lu, K.-K.; Zeng, H.-B.; Cosnier, S.; Zhang, X.-J.; Shan, D. Enhanced Electrochemiluminescence of One-Dimensional Self-Assembled Porphyrin Hexagonal Nanoprisms. ACS Applied Materials & Interfaces 2017, 9 (24), 20904-20912.
    Arshak, K.; Gaidan, I., Development of a novel gas sensor based on oxide thick films. Materials Science and Engineering: B 2005, 118 (1), 44-49.
    Tsung-Heng Tsai, Y.-C. C. 電容與電阻感測器與讀取電路系統整合設計. 科儀新知 2017, 212 期, 26-39.
    Nikolic, M. V.; Milovanovic, V.; Vasiljevic, Z. Z.; Stamenkovic, Z. Semiconductor Gas Sensors: Materials, Technology, Design, and Application. Sensors 2020, 20 (22), 6694-6723.
    Choi, B.; Shin, D.; Lee, H.-S.; Song, H. Nanoparticl
    e design and assembly for p-type metal oxide gas sensors. Nanoscale 2022, 14 (9), 3387-3397.
    Hussain, A.; Zhang, X.; Shi, Y.; Bushira, F. A.; Chen, Y.; Zhang, W.; Chen, W.; Xu, G. Oxygen Vacancies Induced by Pd Doping in Ni-P2O5/MoO3 Hollow Polyhedral Heterostructures for Highly Efficient Diethylamine Gas Sensing. Analytical Chemistry 2022, 94 (44), 15359-15366.
    Bindra, P.; Hazra, A. Capacitive gas and vapor sensors using nanomaterials. Journal of Materials Science: Materials in Electronics 2018, 29 (8), 6129-6148.
    Terzic, E.; Terzic, J.; Nagarajah, R.; Alamgir, M. Capacitive Sensing Technology. A Neural Network Approach to Fluid Quantity Measurement in Dynamic Environments; 2012, 11-37.
    黃敬賀. 奈米氧化鐵薄膜應用於電抗式微小化氣相層析偵測器之研製. 國立臺灣師範大學, 台北市, 2021.
    Krupitsky, H.; Stein, Z.; Goldberg, I.; Strouse, C. E. Crystalline complexes, coordination polymers and aggregation modes of tetra(4-pyridyl)porphyrin. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry 1994, 18 (2), 177-192.
    Sing, K. S. W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry 1985, 57 (4), 603-619.
    Kruk, M.; Jaroniec, M. Gas Adsorption Characterization of Ordered Organic−Inorganic Nanocomposite Materials. Chemistry of Materials 2001, 13 (10), 3169-3183.
    Dixon, Dielectric Constants.https://www.dixonvalve.com/sites/default/files/product/files/brochures-literature/dielectric-constant-values.pdf
    Fisher Scientific, Summary of Key Physical Data for Solvents.https://www.fishersci.co.uk/gb/en/scientific-products/technical-tools/summary-key-physical-data-solvents.html

    下載圖示
    QR CODE