簡易檢索 / 詳目顯示

研究生: 劉冠廷
Liu, Kuan-Ting
論文名稱: 析氫反應在Fe2O3、FeP、Co3O4、Co2P及其相關衍生物的理論計算研究
Computational Study of Hydrogen Evolution Reaction on Fe2O3, FeP, Co3O4, Co2P and their Derivatives
指導教授: 王禎翰
Wang, Jeng-Han
口試委員: 陳欣聰
Chen, Hsin-Tsung
陳輝龍
Chen, Hui-Lung
朱訓鵬
Ju, Shin-Pon
口試日期: 2021/07/27
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 119
中文關鍵詞: 析氫反應氫原子吸附的吸附能吉布斯自由能態密度能帶中心
英文關鍵詞: Hydrogen Evolution Reaction, energetics of adsorption energy, Gibbs free energy, density of state, band centers
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202100944
論文種類: 學術論文
相關次數: 點閱:236下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 析氫反應(HER)是用於高效生產純淨氫燃料的重要催化製程。我們目前的工作通過計算研究了更便宜和常用的Fe2O3、FeP、Co3O4、Co2P催化劑及其衍生物的HER,包括摻雜P和Co的Fe2O3、摻雜O和Co的FeP、摻雜P和Fe的Co3O4 以及摻雜O和Fe的Co2P。已經徹底計算了氫原子吸附的吸附能E_ads (H^*)和吉布斯自由能∆G(H^*)的能量以檢查HER活性,且分析了這些催化劑的態密度(DOS)與能帶中心,進而合理化能量結果。能量結果最初表明Fe2O3(116)、FeP(121)、Co3O4(222)與Co2P(100)是這些未摻雜催化劑中HER活性最好的晶面。此外,它們的相對HER活性遵循FeP > Co2P > Co3O4 > Fe2O3的順序。將O摻雜到FeP (O-FeP)可以進一步提高活性,而將P摻雜到Fe2O3(P-Fe2O3)會降低活性。將P摻雜到Co3O4 (P-Co3O4)可以進一步提高活性,而將O摻雜到Co2P (O-Co2P)會降低活性。它們的相對HER活性遵循O-FeP > P-Co3O4 > O-Co2P > P-Fe2O3。摻雜金屬的製程可以在一定程度上提高活性,其HER活性順序為Co-FeP > Fe-Co2P > Co-Fe2O3 > Fe-Co3O4。最後,我們的結果得出結論,O-FeP有望在所有這些催化劑中表現出最佳的HER活性。

    Hydrogen evolution reaction (HER) is an important catalytic process utilizing for the efficient production of clean hydrogen fuels. Our present work computationally investigates HER on the cheaper and commonly used catalysts of Fe2O3, FeP, Co3O4, Co2P and their deviates, including P and Co-doped Fe2O3, O and Co-doped FeP, P and Fe-doped Co3O4 and O and Fe-doped Co2P. The energetics of adsorption energy, E_ads (H^*), and Gibbs free energy, ∆G(H^* ) for atomic hydrogen adsorption have been thoroughly computed to examine the HER activity; the density of state (DOS) and band centers of those catalysts have been analyzed to rationalize the energetic results. The energetic results initially find that Fe2O3(116), FeP(121), Co3O4(222) and Co2P(100) are the best facets among those un-doped catalysts. Also, their relative HER activity follows the order of FeP > Co2P > Co3O4 > Fe2O3. Doping O to FeP (O-FeP) can further improve the activity, while doping P to Fe2O3 (P-Fe2O3) causes deactivation. Doping P to Co3O4 (P-Co3O4) can further improve the activity, while doping O to Co2P (O-Co2P) causes deactivation. Their relative HER activity follows the order of O-FeP > P-Co3O4 > O-Co2P > P-Fe2O3. The metallic doping process can somewhat promote the activity and their order follows Co-FeP > Fe-Co2P > Co-Fe2O3 > Fe-Co3O4. Finally, our results conclude that O-FeP is expected to show the best HER activity among all those catalysts.

    致謝 i 摘要 ii Abstract iii 目錄 v 表目錄 ix 圖目錄 x 第一章 緒論 - 1 - 1-1 析氫反應的應用 - 1 - 1-2 析氫反應的介紹 - 2 - 1-3 研究方向 - 10 - 第二章 理論計算原理 - 12 - 2-1 密度泛函理論 (Density Functional Theory) - 12 - 2-1-1 Hohenberg-Kohn定理 - 13 - 2-1-2 Kohn-Sham方程 - 13 - 2-1-3 交換關聯泛函:不同級別的近似法 - 15 - 2-2 固態材料計算之理論基礎 - 16 - 2-2-1 Basis set - 16 - 2-2-2 Pseudopotential - 17 - 2-2-3 Reciprocal lattice - 18 - 2-2-4 布洛赫定理 (Bloch’s Theorem) - 19 - 2-2-5 自洽過程 (Self-consistent calculation) - 20 - 2-3 系統設定 - 21 - 2-3-1 VASP計算設定 - 21 - 2-3-2 系統與軟體 - 22 - 2-3-3 計算參數設定 - 22 - 第三章 氧化鐵(Fe2O3)、磷化鐵(FeP)、摻雜磷之氧化鐵(P-Fe2O3)與摻雜氧之磷化鐵(O-FeP)之析氫反應 - 25 - 3-1 Fe2O3的析氫反應 - 25 - 3-1-1 Fe2O3的塊材與晶面分析 - 25 - 3-1-2 Fe2O3的∆G(H^*)分析 - 28 - 3-2 FeP的析氫反應 - 31 - 3-2-1 FeP的塊材與晶面分析 - 31 - 3-2-2 FeP的∆G(H^*)分析 - 33 - 3-3 P-Fe2O3的析氫反應 - 37 - 3-3-1 P-Fe2O3的晶面分析 - 37 - 3-3-2 P-Fe2O3的∆G(H^*)分析 - 40 - 3-4 O-FeP的析氫反應 - 43 - 3-4-1 O-FeP的晶面分析 - 43 - 3-4-2 O-FeP的∆G(H^*)分析 - 46 - 第四章 氧化鈷(Co3O4)、磷化鈷(Co2P)、摻雜磷之氧化鈷(P-Co3O4)與摻雜氧之磷化鐵(O-Co2P)之析氫反應 - 51 - 4-1 Co3O4的析氫反應 - 51 - 4-1-1 Co3O4的塊材與晶面分析 - 51 - 4-1-2 Co3O4的∆G(H^*)分析 - 53 - 4-2 Co2P的析氫反應 - 57 - 4-2-1 Co2P的塊材與晶面分析 - 57 - 4-2-2 Co2P的∆G(H^*)分析 - 59 - 4-3 P-Co3O4的析氫反應 - 63 - 4-3-1 P-Co3O4的晶面分析 - 63 - 4-3-2 P-Co3O4的∆G(H^*)分析 - 66 - 4-4 O-Co2P的析氫反應 - 69 - 4-4-1 O-Co2P的晶面分析 - 69 - 4-4-2 O-Co2P的∆G(H^*)分析 - 72 - 第五章 摻雜鈷氧化鐵(Co-Fe2O3)、摻雜鐵之氧化鈷(Fe-Co3O4)的析氫反應 - 76 - 5-1 Co-Fe2O3的析氫反應 - 76 - 5-1-1 Co-Fe2O3的晶面分析 - 76 - 5-1-2 Co-Fe2O3的∆G(H^*)分析 - 79 - 5-2 Fe-Co3O4的析氫反應 - 82 - 5-2-1 Fe-Co3O4的晶面分析 - 82 - 5-2-2 Fe-Co3O4的∆G(H^*)分析 - 85 - 第六章 摻雜鈷之磷化鐵(Co-FeP)、摻雜鐵之磷化鈷(Fe-Co2P)的析氫反應 - 89 - 6-1 Co-FeP的析氫反應 - 89 - 6-1-1 Co-FeP的晶面分析 - 89 - 6-1-2 Co-FeP的∆G(H^*)分析 - 92 - 6-2 Fe-Co2P的析氫反應 - 96 - 6-2-1 Fe-Co2P的晶面分析 - 96 - 6-2-2 Fe-Co2P的∆G(H^*)分析 - 98 - 第七章 結論 - 103 - 參考文獻 - 106 - 附錄 一氧化碳的阻礙甲醇-d4脫氫反應取決於支持的銠奈米團簇的大小 I 附錄 Fe2O3、FeP、Co3O4、Co2P及其相關衍生物的表面成份元素比例 IX

    1. Sayed M. El-Refaei, Patr?cia A. Russo, and Nicola Pinna ACS Appl. Mater. Interfaces 2021, 13, 22077?22097.
    2. Yang Wang, Biao Kong, Dongyuan Zhao, Huanting Wang, Cordeli Selomulya Nano Today 2017, 15, 26?55.
    3. Yanmei Shi and Bin Zhang Chem. Soc. Rev. 2016, 45 (6), 1529?1541.
    4. Ping Liu and Jose? A. Rodriguez J. Am. Chem. Soc. 2005, 127 (42), 14871?14878.
    5. S. Ted Oyama, Travis Gott, Haiyan Zhao, Yong-Kul Lee Catalysis Today 143 (2009) 94–107.
    6. Jing Zhu, Liangsheng Hu, Pengxiang Zhao, Lawrence Yoon Suk Lee, and Kwok-Yin Wong, Chem. Rev. 2020, 120 (2), 851?918.
    7. Egill Sku?lason, Vladimir Tripkovic, M?rten E. Bjo?rketun, Sigr??dur Gudmundsdo?ttir, Gustav Karlberg, Jan Rossmeisl, Thomas Bligaard, Hannes Jo?nsson, and Jens K. N?rskov J. Phys. Chem. C 2010, 114 (42), 18182?18197.
    8. J. K. N?rskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, and U. Stimming Journal of The Electrochemical Society, 152 (3) J23-J26 (2005)
    9. J. K. N?rskov, T. bligaard, J. Rossmeisl and C. H. christensen Nat. Chem. 2009, 1 (1), 37?46.
    10. Joshua D. Wiensch, Jimmy John, Jesus M. Velazquez, Daniel A. Torelli, Adam P. Pieterick, Matthew T. McDowell, Ke Sun, Xinghao Zhao, Bruce S. Brunschwig, and Nathan S. Lewis ACS Energy Letters 2017, 2 (10), 2234?2238.
    11. Ya Yan, BaoYu Xia, Zhichuan Xu, and Xin Wang, ACS Catal. 2014, 4 (6), 1693?1705.
    12. Guowei Li, Yan Sun, Jiancun Rao, Jiquan Wu, Anil Kumar, Qiu Nan Xu, Chenguang Fu, Enke Liu, Graeme R. Blake, Peter Werner, Baiqi Shao, Kai Liu, Stuart Parkin, Xianjie Liu, Mats Fahlman, Sz-Chian Liou, Gudrun Auffermann, Jian Zhang, Claudia Felser, and Xinliang Feng Adv. Energy Mater. 2018, 8 (24), 1801258.
    13. Men, Y.; Li, P.; Zhou, J.; Chen, S.; Luo, W. Trends in Alkaline Hydrogen Evolution Activity on Cobalt Phosphide Electrocatalysts Doped with Transition Metals. Cell Reports Physical Science 2020, 1 (8), 100136.
    14. Qun He, Dong Tian, Hongliang Jiang, Dengfeng Cao, Shiqiang Wei, Daobin Liu, Pin Song, Yue Lin, and Li Song Adv. Mater. 2020, 32 (11), 1906972.
    15. Guoxiang Hu, Qing Tang and De-en Jiang Phys.Chem.Chem.Phys., 2016, 18, 23864
    16. Jakob Kibsgaard, Thomas F. Jaramillo and Flemming Besenbacher Nat. Chem. 2014, 6, 248?253.
    17. Peng Xiao, Mahasin Alam Sk, Larissa Thia, Xiaoming Ge, Rern Jern Lim, Jing-Yuan Wang, Kok Hwa Lima and Xin Wang Energy Environ. Sci. 2014, 7, 2624?2629.
    18. Desheng Kong, Judy J. Cha, Haotian Wang, Hye Ryoung Lee and Yi Cui Energy Environ. Sci. 2013, 6, 3553–3558.
    19. Sengeni Anantharaj, Sivasankara Rao Ede, Kuppan Sakthikumar, Kannimuthu Karthick, Soumyaranjan Mishra, and Subrata Kundu ACS Catal. 2016, 6, 8069–8097.
    20. Tao Yang, Haonan Xie, Ning Ma, Enzuo Liu, Chunsheng Shi, Chunnian He, Naiqin Zhao Applied Surface Science 550 (2021) 149355
    21. S. Dou, L. Tao, J. Huo, S. Wang and L. Dai, Energy Environ. Sci., 2016, 9, 1320–1326.
    22. Z. Liu, Z. Zhao, Y. Wang, S. Dou, D. Yan, D. Liu, Z. Xia and S. Wang, Adv. Mater., 2017, 29, 1606207.
    23. L. Tao, X. Duan, C. Wang, X. Duan and S. Wang, Chem. Commun., 2015, 51, 7470–7473.
    24. L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang and L. Dai, Angew. Chem., 2016, 128, 5363–5367.
    25. D. Yan, Y. Li, J. Huo, R. Chen, L. Dai and S. Wang, Adv. Mater., 2017, DOI: 10.1002/adma.201606459.
    26. Energy Environ. Sci., 2017, 10, 2563—2569
    27. D.-S. Yang, D. Bhattacharjya, S. Inamdar, J. Park and J.-S. Yu, J. Am. Chem. Soc., 2012, 134, 16127–16130.
    28. H. Yan, C. Tian, L. Wang, A. Wu, M. Meng, L. Zhao and H. Fu, Angew. Chem., Int. Ed., 2015, 54, 6325–6329.
    29. X. Xie, R. Yu, N. Xue, A. B. Yousaf, H. Du, K. Liang, N. Jiang and A. W. Xu, J. Mater. Chem. A, 2016, 4, 1647–1652.
    30. C. Ouyang, X. Wang and S. Wang, Chem. Commun., 2015, 51, 14160–14163.
    31. H. Yan, C. Tian, L. Wang, A. Wu, M. Meng, L. Zhao and H. Fu, Angew. Chem., 2015, 54, 6325–6329.
    32. M. Moreno-Benito, P. Agnolucci and L. G. Papageorgiou, Comput. Chem. Eng., 2017, 102, 110–127.
    33. N. P. Brandon and Z. Kurban, Philos. Trans. R. Soc., A, 2017, 375, 201604000.
    34. R. Coontz and B. Hanson, Science, 2004, 305, 957.
    35. A Jain, Y. Shin and K. A. Persson, Nat. Rev. Mater., 2016, 1, 15004
    36. P. Jena, J. Phys. Chem. Lett., 2011, 2, 206–211.
    37. I. Dincer and C. Acar, Int. J. Hydrogen Energy, 2017, 42, 14843–14864
    38. Li J, Liu J, Tian X, Li Z-Y. Plasmonic particles with unique optical interaction and mechanical motion properties. Part Part Syst Char 2017;34.
    39. Eftekhari A. Electrocatalysts for hydrogen evolution reaction. Int J Hydrogen Energy 2017;42:11053-77.
    40. Thomas, L. H. The calculation of atomic fields. Math. Proc. Cambridge Philos. Soc. 23, 542 (2008).
    41. E. Fermi Phys. 48, 73–79 (1928).
    42. Hohenberg, P. &Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).
    43. Kohn, W. &Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).
    44. Perdew, J. P., Ernzerhof, M. &Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982–9985 (1996).
    45. Perdew, J. P. &Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992)
    46. Wigner, E. &Seitz, F. On the constitution of metallic sodium. Phys. Rev. 43, 804–810 (1933).
    47. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. &Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992).
    48. Bl?chl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
    49. Monkhorst, H. J. &Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).
    50. Henkelman, G., Uberuaga, B. P. &J?nsson, H. Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).
    51. Florian Goltl, Ellen A. Murray, Sean A. Tacey, Srinivas Rangarajan, Manos Mavrikakis Surface Science 700 (2020) 121675.
    52. Abdelmajid Lassoued, Brahim Dkhil, Abdellatif Gadri, Salah Ammar Results in Physics 7 (2017) 3007–3015
    53. G. Kh. Rozenberg, L. S. Dubrovinsky, M. P. Pasternak, O. Naaman, T. Le Bihan, and R. Ahuja PHYSICAL REVIEW B 65 064112
    54. Wolfgang Bergermayer and Hannes Schweiger PHYSICAL REVIEW B 69, 195409 (2004)
    55. Satadeep Bhattacharjee, Umesh V. Waghmare and Seung-Cheol Lee Sci Rep 6, 35916 (2016).
    56. Zhe Zhang, Baoping Lu, Jinhui Hao, Wenshu Yangab and Jilin Tang Chem. Commun., 2014, 50, 11554
    57. Bryan Owens-Baird, Juliana P. S. Sousa, Yasmine Ziouani, Dmitri Y. Petrovykh, Nikolai A. Zarkevich, Duane D. Johnson, Yury V. Kolen'ko and Kirill Kovnir Chem. Sci., 2020, 11, 5007.
    58. Reem Al-Tuwirqi, A.A. Al-Ghamdi, Nadia Abdel Aal, Ahmad Umar, Waleed E. Mahmoud Superlattices and Microstructures 49 (2011) 416–421.
    59. Linhua Hu, Keqiang Sun, Qing Peng, Boqing Xu, and Yadong Li Nano Res (2010) 3: 363–368
    60. Yana Men, Peng Li, Juanhua Zhou, Gongzhen Cheng, Shengli Chen, and Wei Luo ACS Catal. 2019, 9, 3744?3752
    61. S Rundqvist Acta Chem. Scand. 1960, 14, 1961–1979
    62. Zhun Liang, Xiaoliang Zhong, Tianqi Li, Ming Chen, and Guang Feng ChemElectroChem 268-268 https://doi.org/10.1002/celc.201800601.
    63. Zhichao Wang, Hongli Liu, Ruixiang Ge, Xiang Ren, Jun Ren, Dongjiang Yang, Lixue Zhang, and Xuping Sun ACS Catal. 2018, 8, 2236?2241.
    64. Zhaohui Xiao, Yu Wang, Yu-Cheng Huang, Zengxi Wei, Chung-Li Dong, Jianmin Ma, Shaohua Shen, Yafei Li and Shuangyin Wang Energy Environ. Sci., 2017, 10, 2563.
    65. Yong Li Tong, Bao Qian Chi, Dong Li Qia and Weiqiang Zhang RSC Adv., 2021, 11, 1233
    66. Cao Guan,Wen Xiao,Haijun Wu,Ximeng Liu,Wenjie Zang,Hong Zhang,Jun Ding,Yuan Ping Feng,Stephen J. Pennycook,John Wang Nano Energy 48 (2018) 73–80
    67. Yana Men, Peng Li, Juanhua Zhou, Gongzhen Cheng, Shengli Chen, and Wei Luo ACS Catal. 2019, 9, 3744?3752
    68. Kun Liang, Srimanta Pakhira, Zhenzhong Yang, A. Nijamudheen, Licheng Ju, Maoyu Wang, Carlos I. Aguirre-Velez, George E. Sterbinsky, Yingge Du, Zhenxing Feng, Jose L. Mendoza-Cortes, and Yang Yang ACS Catal. 2019, 9, 651?659
    69. Kun Xu, Hui Ding, Mengxing Zhang, Min Chen, Zikai Hao, Lidong Zhang, Changzheng Wu, and Yi Xie Adv. Mater. 2017, 29, 1606980.
    70. Yan Lin, Kaian Sun, Xiaomeng Chen, Chen Chen, Yuan Pan, Xiyou Li, Jun Zhang Journal of Energy Chemistry 55 (2021) 92–101.
    71. Geonhee Cho, Yoonsu Park, Hyeri Kang, Yun-kun Hong, Taegyeom Lee, Don-Hyung Ha Applied Surface Science 510 (2020) 145427.
    72. Chong Lin, Zhengfei Gao, Jianhui Yang, Bin Liu and Jian Jin J. Mater. Chem. A, 2018, 6, 6387.
    73. Thi Luu Luyen Doan, Duy Thanh Tran, Dinh Chuong Nguyen, Huu Tuan Le, Nam Hoon Kim, Joong Hee Lee Applied Catalysis B: Environmental 261 (2020) 118268.
    74. G. T. Burstein, C. J. Barnett, A. R. Kucernak and K. R. Williams, Catalysis Today, 1997, 38, 425-437.
    75. A .Hamnett, Catalysis Today, 1997, 38, 445-457.
    76. K. R. Williams and G. T. Burstein, Catalysis Today, 1997, 38, 401-410.
    77. J. R. Rostrup?Nielsen, Catalysis Reviews, 2004, 46, 247-270.
    78. B. A. Sexton, Surface Science, 1981, 102, 271-281.
    79. B. A. Sexton and A. E. Hughes, Surface Science, 1984, 140, 227-248.
    80. S. Akhter and J. M. White, Surface Science, 1986, 167, 101-126.
    81. D. A. Outka and R. J. Madix, Journal of the American Chemical Society, 1987, 109, 1708-1714.
    82. K. D. Gibson and L. H. Dubois, Surface Science, 1990, 233, 59-64.
    83. J. Wang and R. I. Masel, Journal of the American Chemical Society, 1991, 113, 5850-5856.
    84. N. Kizhakevariam and E. M. Stuve, Surface Science, 1993, 286, 246-260.
    85. M. A. Lazaga, D. T. Wickham, D. H. Parker, G. N. Kastanas and B. E. Koel, in Catalytic Selective Oxidation, American Chemical Society, 1993, vol. 523, ch. 8, pp. 90-109.
    86. J. J. Chen, Z. C. Jiang, Y. Zhou, B. R. Chakraborty and N. Winograd, Surface Science, 1995, 328, 248-262.
    87. S. M. Francis, J. Corneille, D. W. Goodman and M. Bowker, Surface Science, 1996, 364, 30-38.
    88. J. S. Huberty and R. J. Madix, Surface Science, 1996, 360, 144-156.
    89. C. J. Zhang and P. Hu, The Journal of Chemical Physics, 2001, 115, 7182-7186.
    90. C. Ammon, A. Bayer, G. Held, B. Richter, T. Schmidt and H. P. Steinr?ck, Surface Science, 2002, 507-510, 845-850.
    91. M. Morkel, V. V. Kaichev, G. Rupprechter, H. J. Freund, I. P. Prosvirin and V. I. Bukhtiyarov, The Journal of Physical Chemistry B, 2004, 108, 12955-12961.
    92. O. Rodr??guez de la Fuente, M. Borasio, P. Galletto, G. Rupprechter and H. J. Freund, Surface Science, 2004, 566-568, 740-745.
    93. M. Borasio, O. Rodr?guez de la Fuente, G. Rupprechter and H.-J. Freund, The Journal of Physical Chemistry B, 2005, 109, 17791-17794.
    94. K. Habermehl-?wirze?, J. Lahtinen and P. Hautoj?rvi, Surface Science, 2005, 598, 128-135.
    95. C. P. Vinod, J. W. Niemantsverdriet and B. E. Nieuwenhuys, Physical Chemistry Chemical Physics, 2005, 7, 1824-1829.
    96. G.-C. Wang, Y.-H. Zhou and J. Nakamura, The Journal of Chemical Physics, 2005, 122, 044707.
    97. I. Matol?nov?, V. Joh?nek, J. Myslive?ek, K. C. Prince, T. Sk?la, M. ?koda, N. Tsud, M. Vorokhta and V. Matol?n, Surface and Interface Analysis, 2011, 43, 1325-1331.
    98. R. Jiang, W. Guo, M. Li, H. Zhu, L. Zhao, X. Lu and H. Shan, Journal of Molecular Catalysis A: Chemical, 2011, 344, 99-110.
    99. F. Solymosi, A. Berk? and T. I. Tarn?czi, Surface Science, 1984, 141, 533-548.
    100. J. E. Parmeter, J. Xudong and D. W. Goodman, Surface Science, 1990, 240, 85-100.
    101. B.-R. Sheu, S. Chaturvedi and D. R. Strongin, The Journal of Physical Chemistry, 1994, 98, 10258-10268.
    102. C. Panja, N. Saliba and B. E. Koel, Surface Science, 1998, 395, 248-259.
    103. E. Antolini, J. R. C. Salgado and E. R. Gonzalez, Applied Catalysis B: Environmental, 2006, 63, 137-149.
    104. K. S. Kim and M. A. Barteau, Surface Science, 1989, 223, 13-32.
    105. P. A. Dilara and J. M. Vohs, Surface Science, 1994, 321, 8-18.
    106. M. W. Mensch, C. M. Byrd and D. F. Cox, Catalysis Today, 2003, 85, 279-289.
    107. D. R. Mullins, M. D. Robbins and J. Zhou, Surface Science, 2006, 600, 1547-1558.
    108. C. S. Chao, T. W. Liao, C. X. Wang, Y. D. Li, T. C. Hung and M. F. Luo, Applied Surface Science, 2014, 293, 352-358.
    109. T.-C. Hung, T.-W. Liao, Z.-H. Liao, P.-W. Hsu, P.-Y. Cai, H. Lee, Y.-L. Lai, Y.-J. Hsu, H.-Y. Chen, J.-H. Wang and M.-F. Luo, ACS Catalysis, 2015, 5, 4276-4287.
    110. P. Gassmann, R. Franchy and H. Ibach, Surface Science, 1994, 319, 95-109.
    111. R.-P. Blum, D. Ahlbehrendt and H. Niehus, Surface Science, 1998, 396, 176-188.
    112. N. Fr?my, V. Maurice and P. Marcus, Journal of the American Ceramic Society, 2003, 86, 669-675.
    113. M. S. Zei, C. S. Lin, W. H. Wen, C. I. Chiang and M. F. Luo, Surface Science, 2006, 600, 1942-1951.
    114. M.-F. Luo, C.-I. Chiang, H.-W. Shiu, S. D. Sartale and C.-C. Kuo, Nanotechnol., 2006, 17, 360-366.
    115. M. F. Luo, W. H. Wen, C. S. Lin, C. I. Chiang, S. D. Sartale and M. S. Zei, Surface Science, 2007, 601, 2139-2146.
    116. G. Kresse and J. Furthm?ller, Phys. Rev. B, 1996, 54, 11169-11186.
    117. G. Kresse and J. Hafner, Phys. Rev. B, 1993, 47, 558-561.
    118. G. Kresse and J. Hafner, Phys. Rev. B, 1994, 49, 14251-14269.
    119. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett., 1980, 45, 566-569.
    120. J. P. Perdew and Y. Yang, Phys. Rev. B, 1992, 45, 244.
    121. P. E. Bl?chl, Phys. Rev. B, 1994, 50, 17953-17979.
    122. G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758-1775.
    123. H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 1976, 13, 5188-5192.
    124. G. Mills, H. Jonsson and G. K. Schenter, Surf. Sci., 1995, 324, 305-337.
    125. M.-F. Luo, H.-W. Shiu, M.-H. Tien, S. D. Sartale, C.-I. Chiang, Y.-C. Lin and Y.-J. Hsu, Surf. Sci., 2008, 602, 241-248.
    126. A. Cavallin, M. Pozzo, C. Africh, A. Baraldi, E. Vesselli, C. Dri, G. Comelli, R. Larciprete, P. Lacovig, S. Lizzit and D. Alf?, ACS Nano, 2012, 6, 3034-3043.
    127. C.-S. Chao, Y.-D. Li, B.-W. Hsu, W.-R. Lin, H.-C. Hsu, T.-C. Hung, C.-C. Wang and M.-F. Luo, J. Phys. Chem. C, 2013, 117, 5667-5677.
    128. C. Houtman and M. A. Barteau, Langmuir, 1990, 6, 1558-1566.
    129. J. Stubenrauch and J. M. Vohs, Catalysis Letters, 1997, 47, 21-25.
    130. E. S. Putna, R. J. Gorte, J. M. Vohs and G. W. Graham, J. Catal., 1998, 178, 598-603.
    131. T.-C. Hung, T.-W. Liao, Z.-H. Liao, P.-W. Hsu, P.-Y. Cai, W.-H. Lu, J.-H. Wang and M.-F. Luo, RSC Advances, 2016, 6, 3830-3839.
    132. H. Lee, Z.-H. Liao, P.-W. Hsu, Y.-C. Wu, M.-C. Cheng, J.-H. Wang and M.-F. Luo, Physical Chemistry Chemical Physics, 2018, 20, 11260-11272.
    133. S. Andersson, M. Frank, A. Sandell, A. Giertz, B. Brena, P. A. Bruehwiler, Martensson, Libuda, M. B?umer, Marcus, Freund and H. J., The Journal of Chemical Physics, 1998, 108.

    下載圖示
    QR CODE