簡易檢索 / 詳目顯示

研究生: 彭頎泰
Peng, Qi-Tai
論文名稱: 全無機鈣鈦礦光偵測器之製作與應用
Production and application of all-inorganic perovskite photon detector
指導教授: 李亞儒
Lee, Ya-Ju
口試委員: 李亞儒 張俊傑 楊斯博
口試日期: 2021/08/23
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 69
中文關鍵詞: 全無機鈣鈦礦光偵測器電阻式記憶體
英文關鍵詞: All-inorganic perovskite, Photon detector, Resistive random access memory
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202101270
論文種類: 學術論文
相關次數: 點閱:166下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全無機鈣鈦礦具有優異的光吸收、高載子遷移率與優異光響應等優點,本實驗在室溫下合成CsPbBr3鈣鈦礦作為光偵測器(Photon detector, PD)之吸光層與電阻式記憶體(Resistive random access memory, RRAM)之絕緣層,並以簡易之結構Ag/PMMA/CsPbBr3/ITO作為配置,為避免陰極與陽極直接接觸,將PMMA溶液覆蓋在CsPbBr3上方,除了避免上下電極直接接觸之外,並填補CsPbBr3晶粒與晶粒間之空缺,降低晶界間的缺陷,使鈣鈦礦當作偵測器之吸收層時,增加照光後載子的收集效率,作為記憶體,可減少頂部 (Ag) 和底部 (ITO) 電極之間漏電路徑之形成。
    本實驗利用ITO(氧化銦錫)串聯相同結構之元件,在頂部(Ag)電極施加正偏壓時,可作為記憶體。若施加負偏壓時,作為光偵測器。通過改變偏壓與照光條件探討光偵測器產生之光電流的變化,進而達到記憶體以低電壓驅動之目的。

    All-inorganic perovskite has the advantages of excellent light absorption, high carrier mobility and excellent light response. In this experiment, CsPbBr3 perovskite was synthesized at room temperature as the light-absorbing layer and resistance of the Photon detector (PD) The insulating layer of Resistive random access memory (RRAM) is configured with a simple structure Ag/PMMA/CsPbBr3/ITO. To avoid direct contact between the cathode and the anode, the PMMA solution is covered on the top of CsPbBr3, except to avoid direct contact between the upper and lower electrodes.In addition, it also fills the gaps between the CsPbBr3 crystal grains and reduces the defects between the grain boundaries. When the perovskite is used as the absorption layer of the detector, the collection efficiency of carriers after illumination is increased. As a memory, it can reduce the formation of leakage paths between the top (Ag) and bottom (ITO) electrodes.
    In this experiment, ITO (Indium tin oxide) elements of the same structure are connected in series. When a positive bias is applied to the top (Ag) electrode, it acts as a memory, and when a negative bias is applied, it acts as a photodetector. By changing the light intensity, explore the changes in the photocurrent generated by the photon detector under different voltages, and then achieve the goal of driving the memory at low voltage

    摘要 ii Abstract iii 目錄 iv 圖目錄 viii 表目錄 xii 第一章 序論 1 1.1前言 1 1.2研究動機 2 1.3論文架構 2 第二章 基本原理與文獻回顧 3 2.1鈣鈦礦 3 2.1.1鈣鈦礦CsPbX3室溫合成 4 2.2光偵測器(PD) 5 2.2.1光電效應 6 2.2.2光二極體 6 2.2.3光導體 7 2.3光偵測器性能的關鍵條件 8 2.3.1穩定性 8 2.3.2響應速度 8 2.3.3偵測能力 9 2.3.4性能參數 9 2.4金屬-半導體(MS) 11 2.5金屬-半導體-金屬(MSM) 12 2.6記憶體簡介 12 2.6.1電阻式記憶體(RRAM) 12 2.6.2電阻式記憶體切換特性 13 2.7電阻式記憶體傳導機制 14 2.7.1蕭特基接觸 14 2.7.2歐姆接觸 15 2.7.3空間電荷限制電流 16 2.7.4穿遂效應 16 2.7.5離子傳導機制 18 2.8文獻回顧 20 第三章 實驗方法與儀器 25 3.1實驗藥品 25 3.2實驗步驟 26 3.2.1鈣鈦礦CsPbBr3室溫合成 26 3.2.2 PMMA溶液合成 29 3.2.3清洗玻璃基板 29 3.2.4元件製程 29 3.3實驗儀器 31 3.3.1旋轉塗佈機(Spin Coater) 31 3.3.2 射頻磁控濺鍍機(Sputter) 31 3.3.3黑箱探針量測平台 33 3.3.4示波器(Oscilloscope) 34 3.3.5 訊號產生器(Function generator) 34 3.3.6掃描式電子顯微鏡(SEM) 35 3.3.7穿透式電子顯微鏡(TEM) 36 3.3.8 X射線衍射儀(XRD) 37 3.3.9光致發光(PL) 38 3.3.10穿透反射 39 3.4實驗架構 40 第四章 結果與討論 43 4.1鈣鈦礦材料分析 43 4.1.1 XRD分析 43 4.1.2 TEM分析 44 4.1.3吸收與光致發光光譜 45 4.1.4 SEM與EDX分析 46 4.2元件結構 49 4.3 PD特性量測分析 51 4.3.1光偵測器機制 51 4.3.2 Light-illumination I-V量測 52 4.3.3 PD I-t量測 53 4.3.4 PD Response量測 54 4.4 RRAM特性量測分析 56 4.4.1 RRAM電阻切換機制 56 4.4.2 RRAM I-V量測 57 4.4.3 RRAM 傳導機制 58 4.5串聯PD & RRAM特性量測分析 59 4.5.1 串聯元件電路與能帶圖 59 4.5.2 串聯元件I-V量測 60 4.5.3 串聯元件照光量測 61 4.5.4 串聯元件不同電壓光響應量測 63 第五章 結論 65 參考文獻 66

    [1]Gao, Yanbo, et al. "CsPbBr3 perovskite nanoparticles as additive for environmentally stable perovskite solar cells with 20.46% efficiency." Nano Energy 59 (2019): 517-526.
    [2]Zhang, Chengxi, et al. "Core/shell perovskite nanocrystals: synthesis of highly efficient and environmentally stable FAPbBr3/CsPbBr3 for LED applications." Advanced Functional Materials 30.31 (2020): 1910582.
    [3]Shoaib, Muhammad, et al. "Directional growth of ultralong CsPbBr3 perovskite nanowires for high-performance photodetectors." Journal of the American Chemical Society 139.44 (2017): 15592-15595.
    [4]Grundmann, Marius. "Light-to-Electricity Conversion." The Physics of Semiconductors. Springer, Cham, 2016. 669-723.
    [5]Liu, Xingyue, et al. "Ultrafast, self-powered and charge-transport-layer-free photodetectors based on high-quality evaporated CsPbBr3 perovskites for applications in optical communication." Journal of Materials Chemistry C 8.10 (2020): 3337-3350.
    [6]Dong, Yuhui, et al. "Improving all‐inorganic perovskite photodetectors by preferred orientation and plasmonic effect." Small 12.40 (2016): 5622-5632.
    [7]Zhou, Hai, et al. "Self-powered all-inorganic perovskite microcrystal photodetectors with high detectivity." The journal of physical chemistry letters 9.8 (2018): 2043-2048.
    [8]Lee, Ya-Ju, et al. "All-inorganic perovskite quantum dot light-emitting memories." (2020).
    [9]B. R. Sutherland and E. H. J. N. P. Sargent, "Perovskite photonic sources," vol. 10, no. 5, p. 295, 2016.
    [10]Protesescu, Loredana, et al. "Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut." Nano letters 15.6 (2015): 3692-3696.
    [11]Zhang, Taiyang, et al. "Organic salt mediated growth of phase pure and stable all-inorganic CsPbX3 (X= I, Br) perovskites for efficient photovoltaics." Science Bulletin 64.23 (2019): 1773-1779.
    [12]S. Wei, Y. Yang, X. Kang, L. Wang, L. Huang, and D. J. C. C. Pan, "Room-temperature and gram-scale synthesis of CsPbX3 (X= Cl, Br, I) perovskite nanocrystals with 50–85% photoluminescence quantum yields," vol. 52, no. 45, pp. 7265-7268, 2016.
    [13]Gu, Qiongchan, et al. "Plasmon enhanced perovskite-metallic photodetectors." Materials & Design 198 (2021): 109374.
    [14]Wang, Ye, et al. "Metal halide perovskite photodetectors: Material features and device engineering." Chinese Physics B 28.1 (2019): 018502.
    [15]Pan, A., and X. Zhu. "Optoelectronic properties of semiconductor nanowires." Semiconductor Nanowires. Woodhead Publishing, 2015. 327-363.
    [16]Chen, Zefeng, et al. "High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode." Advanced Optical Materials 3.9 (2015): 1207-1214.
    [17]Li, Chenglong, et al. "Advances in perovskite photodetectors." InfoMat 2.6 (2020): 1247-1256.
    [18]H.D. Jahromi, M. Sheikhi, and M. Yousefi. Investigation of the quantum dot infrared photodetectors dark current. Optics & Laser Technology, 2011, 43, 1020-1025.
    [19]Li, Xiaoming, et al. "Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity." Acs Nano 11.2 (2017): 2015-2023.
    [20]Zheng, Wei, et al. "Balanced photodetection in one-step liquid-phase-synthesized CsPbBr3 micro-/nanoflake single crystals." ACS applied materials & interfaces 10.2 (2018): 1865-1870.
    [21]Yang, Xiaohan, et al. "MgO/ZnO microsphere bilayer structure towards enhancing the stability of the self-powered MAPbI3 perovskite photodetectors with high detectivity." Applied Surface Science 504 (2020): 144468.
    [22]Kang, Chun Hong, et al. "High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication." Light: Science & Applications 8.1 (2019): 1-12.
    [23]Dou, Letian, et al. "Solution-processed hybrid perovskite photodetectors with high detectivity." Nature communications 5.1 (2014): 1-6.
    [24]Ji, Zhong, et al. "All‐Inorganic Perovskite Photodetectors with Ultrabroad Linear Dynamic Range for Weak‐Light Imaging Applications." Advanced Optical Materials 8.23 (2020): 2001436.
    [25]Zhao, Xinyu, et al. "Interface engineering for gain perovskite photodetectors with extremely high external quantum efficiency." RSC Advances 10.54 (2020): 32976-32983.
    [26]Wu, Gang, et al. "Perovskite/Organic Bulk‐Heterojunction Integrated Ultrasensitive Broadband Photodetectors with High Near‐Infrared External Quantum Efficiency over 70%." Small 14.39 (2018): 1802349.
    [27]李光立,氮化鎵金屬-半導體-金屬光偵測器之研究,碩士論文,國立交通大學電子物理系,新竹市,2002。
    [28]T. J. J. o. A. P. Hickmott, "Low‐frequency negative resistance in thin anodic oxide films," vol. 33, no. 9, pp. 2669-2682, 1962.
    [29]R. Waser, R. Dittmann, G. Staikov, and K. J. A. m. Szot, "Redox‐based resistive switching memories–nanoionic mechanisms, prospects, and challenges," vol. 21, no. 25-26, pp. 2632-2663, 2009.
    [30]盧德恩,表面氯化處理之氮化鎵/氮化鋁鎵金屬-半導體-金屬光檢測器低頻雜訊特性研究,碩士論文,國立成功大學微電子工程研究所碩博士班,台南市,2009。
    [31]Blank, T. V., and Yu A. Gol’Dberg. "Mechanisms of current flow in metal-semiconductor ohmic contacts." Semiconductors 41.11 (2007): 1263-1292.
    [32]P. J. J. o. P. D. A. P. Murgatroyd, "Theory of space-charge-limited current enhanced by Frenkel effect," vol. 3, no. 2, p. 151, 1970.
    [33] J. J. P. R. Frenkel, "On pre-breakdown phenomena in insulators and electronic semi-conductors," vol. 54, no. 8, p. 647, 1938.
    [34] M. A. Lampert and P. Mark, "Current injection in solids," 1970.
    [35] M. D. Licker, McGraw-Hill concise encyclopedia of science & technology. McGraw-Hill Professional Publishing, 2005.
    [36] R. Waser and M. Aono, "Nanoionics-based resistive switching memories," in Nanoscience And Technology: A Collection of Reviews from Nature Journals: World Scientific, 2010, pp. 158-165.
    [37] K. J. J. o. P. D. A. P. Ellmer, "Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties," vol. 33, no. 4, p. R17, 2000.
    [38] Zeng, Junpeng, et al. "Interfacial‐tunneling‐effect‐enhanced CsPbBr3 photodetectors featuring high detectivity and stability." Advanced Functional Materials 29.51 (2019): 1904461.
    [39] Li, Pengfei, et al. "High performance photodetector based on 2D CH3NH3PbI3 perovskite nanosheets." Journal of Physics D: Applied Physics 50.9 (2017): 094002.
    [40] Mehonic, A., T. Gerard, and A. J. Kenyon. "Light-activated resistance switching in SiOx RRAM devices." Applied Physics Letters 111.23 (2017): 233502.
    [41] Li, Xiaoming, et al. "CsPbX3 quantum dots for lighting and displays: room‐temperature synthesis, photoluminescence superiorities, underlying origins and white light‐emitting diodes." Advanced Functional Materials 26.15 (2016): 2435-2445.
    [42] 謝嘉民, et al. "光激發螢光量測的原理, 架構及應用." 科儀新知 146 (2005): 39-51.
    [43] I. Y. Zaitseva, I. Kovaleva, and V. J. R. j. o. i. c. Fedorov, "HgBr2-CsPbBr3 and CsHgBr3-PbBr2 Joins of the HgBr2-PbBr2-CsBr System," vol. 51, no. 4, pp. 619-623, 2006.
    [44] M. Rodová, J. Brožek, K. Knížek, K. J. J. o. t. a. Nitsch, and calorimetry, "Phase transitions in ternary caesium lead bromide," vol. 71, no. 2, pp. 667-673, 2003.

    無法下載圖示 本全文未授權公開
    QR CODE