簡易檢索 / 詳目顯示

研究生: 周黎恩
Chou, Li-En
論文名稱: 透過單一肌電慣性感測儀器參數預測長跑運動生理指標
Prediction of Long-Distance Running Physiological Indicators Through a Single Electromyography Inertial Sensing Device Parameter
指導教授: 相子元
Shiang, Tzyy-Yuang
王鶴森
Wang, Ho-Seng
口試委員: 相子元
Shiang, Tzyy-Yuang
陳家祥
Chen, Chia-Hsiang
王鶴森
Wang, Ho-Seng
口試日期: 2024/05/20
學位類別: 碩士
Master
系所名稱: 體育與運動科學系
Department of Physical Education and Sport Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 54
中文關鍵詞: 穿戴式裝置表面肌電圖慣性感測器
英文關鍵詞: Wearable Devices, Surface Electromyography, Inertial Measurement Unit
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401207
論文種類: 學術論文
相關次數: 點閱:261下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去判斷適合跑步速度的方法多以生理學參數為標準,然而這種方式時常受到環境限制,若能使用較簡便且能實地取得數據的檢測方法,則可以幫助更多運動人口得到更加豐富的資訊。目的:透過穿戴式裝置測得生物力學參數加速度、角速度和表面肌電與生理學參數氣體交換量進行比較,進而得出隨速度變化下的閾值速度。方法:實驗招募12名男性業餘跑者,於室內跑步機連續漸增負荷測驗,測驗時以攜帶式氣體分析監測儀收集分析生理訊號,以及整合式肌電慣性感測檢測儀紀錄肌肉電位和加速規的訊號,計算出生物力學指標,並比較生理學和生物力學參數閾值。結果:各項生物力學參數皆與VO2/kg呈現顯著相關,其中最大肌肉中位頻率、觸地時間、騰空時間以及著地指數與生理指標呈負相關,相關係數落在 (r = -0.819 至 -0.391) 之間,剩餘生物力學參數與生理指標呈正相關相關係數落在 (r = 0.376 ~ 0.915)。生物力學閾值速度與VT1速度皆無顯著相關,肌電閾值速度與VT2速度皆呈中度顯著相關 (r = 0.735 ~ 0.741),而運動學則是步頻、騰空時間以及著地指數閾值速度與VT2速度達顯著相關,係數落在中度相關 (r = 0.583~ 0.689),且與VT2 相關的生物力學閾值速度皆未與VT2速度達顯著差異。結論: 本次實驗的結果發現生物力學閾值可用於代替昂貴繁雜的生理檢測,提供更豐富細節的資訊給跑者與教練進行訓練的監控以及安排。

    Traditional methods for determining appropriate running speeds have often relied on physiological parameters. The use of simpler testing methods could provide more information. The advancements in wearable devices enable us to perform tests in a simpler and less intrusive manner. Objective: We aimed to compare biomechanical parameters obtained from wearable devices with physiological parameters, to derive threshold under varying velocity. Methods: Twelve male amateur runners participated in incremental tests on a treadmill indoors. while signals from integrated EMG and IMU sensors were recorded to compute biomechanical indices. These indices were then compared with physiological parameters to determine biomechanical thresholds velocity. Results: All biomechanical parameters were significantly correlated with VO2/kg. MPF, Contact Time, Flight Time, and Duty Factor showed a negative correlation, with correlation coefficients ranging from moderate (r = -0.819 to -0.391). The remaining biomechanical parameters had correlation coefficients ranging from (r = 0.376 to 0.915). There was no significant correlation between biomechanical thresholds velocity and VT1 velocity. However, EMG thresholds velocity were significantly correlated with VT2 velocity, with coefficients falling in the moderate range (r = 0.735 to 0.741). The thresholds velocity for kinematic factors such as Cadence, Flight Time, and Duty Factor, were significantly correlated with VT2 velocity, with coefficients also in the moderate range (r = 0.583 to 0.689). No significant differences were found among biomechanical thresholds correlated with VT2. Conclusion: The results of this experiment suggest that biomechanical thresholds can serve as substitutes for complex physiological testing. They can also offer more detailed information for monitoring and arranging training for runners.

    摘要................................................................................................................................. i 英文摘要........................................................................................................................ ii 目次.............................................................................................................................. iii 表次............................................................................................................................... vi 圖次.............................................................................................................................. vii 第壹章 緒論........................................................................................................... - 1 - 第一節 前言....................................................................................................... - 1 - 第二節 研究背景............................................................................................... - 3 - 第三節 研究目的............................................................................................... - 4 - 第四節 研究假設............................................................................................... - 4 - 第五節 研究範圍與限制................................................................................... - 4 - 第六節 研究之重要性....................................................................................... - 5 - 第貳章 文獻探討................................................................................................... - 6 - 第一節 長跑效率判斷不同指標....................................................................... - 6 - 第二節 跑步運動學參數閾值......................................................................... - 12 - 第三節 表面肌電圖訊號閾值......................................................................... - 14 - 第四節 文獻小結............................................................................................. - 17 - 第參章 研究方法................................................................................................. - 18 - 第一節 研究對象............................................................................................. - 18 - 第二節 使用儀器與設備................................................................................. - 18 - 第三節 實驗流程............................................................................................. - 21 - 第四節 資料分析............................................................................................. - 22 - 第五節 統計方法............................................................................................. - 26 - 第肆章 研究結果 ................................................................................................ - 27 - 第一節 本次實驗中各項參數隨速度之變化趨勢......................................... - 27 - 第二節 生物力學參數與生理參數之相關性................................................. - 29 - 第三節 生理指標閾值與各項生物力學參數閾值之相關性....................... - 31 - 第四節 VT2 與各項生物力學參數第二閾值之間的誤差 ............................. - 33 - 第伍章 研究討論................................................................................................. - 35 - 第一節 生物力學參數與生理參數之相關性................................................. - 35 - 第二節 生理指標閾值與各項生物力學參數閾值之相關性....................... - 37 - 第三節 VT2 與各項生物力學參數第二閾值之間的誤差 .......................... - 40 - 第四節 單一儀器測量生物力學參數第二閾值作為 VT2的替代方案 ..... - 41 - 第陸章 結論......................................................................................................... - 43 - 參考文獻............................................................................................................... - 44 -

    Abhayasinghe, N., Murray, I., & Sharif Bidabadi, S. (2019). Validation of thigh angle estimation using inertial measurement unit data against optical motion capture systems. Sensors, 19(3), 596.
    Albrecht, T. J., Foster, V. L., Dickinson, A. L., & Debever, J. M. (1986). Triathletes: exercise parameters measured during bicycle, swim bench, and treadmill testing. Medicine & Science in Sports & Exercise, 18(2), S86.
    Apte, S., Prigent, G., Stöggl, T., Martínez, A., Snyder, C., Gremeaux-Bader, V., & Aminian, K. (2021). Biomechanical response of the lower extremity to running-induced acute fatigue: a systematic review. Frontiers in Physiology, 12, 646042.
    Balshaw, T. G., Fry, A., Maden-Wilkinson, T. M., Kong, P. W., & Folland, J. P. (2017). Reliability of quadriceps surface electromyography measurements is improved by two vs. single site recordings. European Journal of Applied Physiology, 117, 1085-1094.
    Bearden, S. E., & Moffatt, R. J. (2001). Leg electromyography and the VO2-power relationship during bicycle ergometry. Medicine & Science in Sports & Exercise, 33(7), 1241-1245.
    Boyas, S., & Guével, A. (2011). Neuromuscular fatigue in healthy muscle: underlying factors and adaptation mechanisms. Annals of Physical and Rehabilitation Medicine, 54(2), 88-108.
    Binder, R. K., Wonisch, M., Corra, U., Cohen-Solal, A., Vanhees, L., Saner, H., & Schmid, J. P. (2008). Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. European Journal of Preventive Cardiology, 15(6), 726-734.
    Brahms, C. M., Zhao, Y., Gerhard, D., & Barden, J. M. (2018). Stride length determination during overground running using a single foot-mounted inertial measurement unit. Journal of Biomechanics, 71, 302-305.
    Brooks, G. A. (1986, December). Lactate production under fully aerobic conditions: the lactate shuttle during rest and exercise. Federation proceedings (Vol. 45, No. 13, pp. 2924-2929).
    Camic, C. L., Housh, T. J., Johnson, G. O., Hendrix, C. R., Zuniga, J. M., Mielke, M., & Schmidt, R. J. (2010). An EMG frequency-based test for estimating the neuromuscular fatigue threshold during cycle ergometry. European Journal of Applied Physiology, 108, 337-345.
    Candotti, C. T., Loss, J. F., Melo, M. D. O., La Torre, M., Pasini, M., Dutra, L. A., ... & de Oliveira, L. P. (2008). Comparing the lactate and EMG thresholds of recreational cyclists during incremental pedaling exercise. Canadian Journal of Physiology and Pharmacology, 86(5), 272-278.
    Casado, A., Tuimil, J. L., Iglesias, X., Fernández-del-Olmo, M., Jiménez-Reyes, P., Martín-Acero, R., & Rodríguez, F. A. (2022). Maximum aerobic speed, maximum oxygen consumption, and running spatiotemporal parameters during an incremental test among middle-and long-distance runners and endurance non-running athletes. PeerJ, 10, e14035.
    Cerezuela-Espejo, V., Courel-Ibáñez, J., Morán-Navarro, R., Martínez-Cava, A., & Pallarés, J. G. (2018). The relationship between lactate and ventilatory thresholds in runners: validity and reliability of exercise test performance parameters. Frontiers in Physiology, 9, 1320.
    Cerezuela-Espejo, V., Hernández-Belmonte, A., Courel-Ibáñez, J., Conesa-Ros, E., Mora-Rodríguez, R., & Pallarés, J. G. (2021). Are we ready to measure running power? Repeatability and concurrent validity of five commercial technologies. European Journal of Sport Science, 21(3), 341-350.
    Cifrek, M., Medved, V., Tonković, S., & Ostojić, S. (2009). Surface EMG based muscle fatigue evaluation in biomechanics. Clinical Biomechanics, 24(4), 327-340.
    Masuda, K., Masuda, T., Sadoyama, T., Inaki, M., & Katsuta, S. (1999). Changes in surface EMG parameters during static and dynamic fatiguing contractions. Journal ofElectromyography and Kinesiology, 9(1), 39-46.
    Chalitsios, C., Nikodelis, T., Mavrommatis, G., & Kollias, I. (2024). Subject-specific sensitivity of several biomechanical features to fatigue during an exhaustive treadmill run. Scientific Reports, 14(1), 1004.
    Chwalbinska-Moneta, J., Kaciuba-Uscilko, H., Krysztofiak, H., Ziemba, A., Krzeminski, K., Kruk, B., & Nazar, K. (1998). Relationship between EMG, blood lactate, and plasma catecholamine thresholds during graded exercise in men. Journal of Physiology and Pharmacology, 49(3).
    Cui, C., Miao, H., Liang, T., & Liu, X. (2023). Analysis of muscle synergy and muscle functional network at different walking speeds based on surface electromyographic signal. Journal of Biomedical Engineering, 40(5), 938-944.
    de Lucas, R. D., Dittrich, N., Junior, R. B., de Souza, K. M., & Guglielmo, L. G. A. (2012). Is the critical running speed related to the intermittent maximal lactate steady state?. Journal of Sports Science & Medicine, 11(1), 89.
    Ertl, P., Kruse, A., & Tilp, M. (2016). Detecting fatigue thresholds from electromyographic signals: A systematic review on approaches and methodologies. Journal of Electromyography and Kinesiology, 30, 216-230.
    Fadillioglu, C., Möhler, F., Reuter, M., & Stein, T. (2022). Changes in key biomechanical parameters according to the expertise level in runners at different running speeds. Bioengineering, 9(11), 616.
    Faude, O., Kindermann, W., & Meyer, T. (2009). Lactate threshold concepts: how valid are they?. Sports Medicine, 39, 469-490.
    Ferguson, B. S., Rogatzki, M. J., Goodwin, M. L., Kane, D. A., Rightmire, Z., & Gladden, L. B. (2018). Lactate metabolism: historical context, prior misinterpretations, and current understanding. European Journal of Applied Physiology, 118, 691-728.
    Figueiredo, D. H., Figueiredo, D. H., Manoel, F. D. A., & Machado, F. A. (2021). Peak Running Velocity or Critical Speed Under Field Conditions: Which Best Predicts 5-km Running Performance in Recreational Runners?. Frontiers in Physiology, 12, 680790.
    Fihl, P., & Moeslund, T. B. (2007). Classification of gait types based on the duty-factor. In 2007 IEEE Conference on Advanced Video and Signal Based Surveillance (pp. 318-323). IEEE.
    Finni, T., Kyrolainen, H., Avela, J., & Komi, P. V. (2003). Maximal but not submaximal performance is reduced by constant-speed 10-km run. Journal of Sports Medicine and Physical Fitness, 43(4), 411-417.
    Folland, J. P. A., Sam J Black, Matthew I Handsaker, Joseph C Forrester, Stephanie E. (2017). Running technique is an important component of running economy and performance. Medicine Science in Sports and Exercise, 49(7), 1412.
    Foster, C. (1983). VO2 max and training indices as determinants of competitive running performance. Journal of Sports Sciences, 1(1), 13-22.
    Foxlin, E. (2005). Pedestrian tracking with shoe-mounted inertial sensors. IEEE Computer Graphics and Applications, 25(6), 38-46.
    Frazão, M., Silva, P. E., Cacau, L. D. A. P., Petrucci, T. R., Assis, M. C., da Cruz Santos, A., & do Socorro Brasileiro-Santos, M. (2021). EMG breakpoints for detecting anaerobic threshold and respiratory compensation point in recovered COVID-19 patients. Journal of Electromyography and Kinesiology, 59, 102567.
    Gallagher, S., Pollard, J., & Porter, W. L. (2011). Electromyography of the thigh muscles during lifting tasks in kneeling and squatting postures. Ergonomics, 54(1), 91-102.
    García-Pinillos, F., Cartón-Llorente, A., Jaén-Carrillo, D., Delgado-Floody, P., Carrasco-Alarcón, V., Martínez, C., & Roche-Seruendo, L. E. (2020). Does fatigue alter step characteristics and stiffness during running?. Gait & Posture, 76, 259-263.
    Ghosh, A. K. (2004). Anaerobic threshold: its concept and role in endurance sport. The Malaysian Journal of Medical Sciences, 11(1), 24.
    Glass, S. C., Knowlton, R. G., Sanjabi, P. B., & Sullivan, J. J. (1998). Identifying the integrated electromyographic threshold using different muscles during incremental cycling exercise. The Journal of Sports Medicine and Physical Fitness, 38(1), 47-52.
    Giovanelli, N., Scaini, S., Billat, V., & Lazzer, S. (2020). A new field test to estimate the aerobic and anaerobic thresholds and maximum parameters. European Journal of Sport Science, 20(4), 437-443.
    Gondim, F. J., Zoppi, C. C., Pereira-da-Silva, L., & de Macedo, D. V. (2007). Determination of the anaerobic threshold and maximal lactate steady state speed in equines using the lactate minimum speed protocol. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 146(3), 375-380.
    Gurchiek, R. D., McGinnis, R. S., Needle, A. R., McBride, J. M., & van Werkhoven, H. (2017). The use of a single inertial sensor to estimate 3-dimensional ground reaction force during accelerative running tasks. Journal of Biomechanics, 61, 263-268.
    Hausswirth, C., Argentin, S., Bieuzen, F., Le Meur, Y., Couturier, A., & Brisswalter, J. (2010). Endurance and strength training effects on physiological and muscular parameters during prolonged cycling. Journal of Electromyography and Kinesiology, 20(2), 330-339.
    Heck, H., Mader, A., Hess, G., Mücke, S., Müller, R., & Hollmann, W. (1985). Justification of the 4-mmol/l lactate threshold. International Journal of Sports Medicine, 6(03), 117-130.
    Hernando, C., Hernando, C., Panizo, N., Collado-Boira, E., Folch-Ayora, A., Martínez-Navarro, I., & Hernando, B. (2022). Renal function recovery strategies following marathon in amateur runners. Frontiers in Physiology, 13, 812237.
    Hendrix, C. R., Housh, T. J., Johnson, G. O., Mielke, M., Camic, C. L., Zuniga, J. M., & Schmidt, R. J. (2009). A new EMG frequency-based fatigue threshold test. Journal of Neuroscience Methods, 181(1), 45-51.
    Hendrix, C. R., Housh, T. J., Camic, C. L., Zuniga, J. M., Johnson, G. O., & Schmidt, R. J. (2010). Comparing electromyographic and mechanomyographic frequency-based fatigue thresholds to critical torque during isometric forearm flexion. Journal of Neuroscience Methods, 194(1), 64-72.
    Hierholzer, K. M. (2020). The Effects of Increasing Running Speed on vGRF and Asymmetry. East Tennessee State University,
    Hill, D., Ferguson, C. S (1999). A physiological description of critical velocity. European Journal of Applied Physiology Occupational Physiology, 79(3), 290-293.
    Hoffman, R. L. (1999). Effects of training at the ventilatory threshold on the ventilatory threshold and performance in trained distance runners. The Journal of Strength & Conditioning Research, 13(2), 118-123.
    Hollmann, W. (2001). 42 years ago—development of the concepts of ventilatory and lactate threshold. Sports Medicine, 31(5), 315-320.
    Homma, T., Hamaoka, T., Sako, T., Murakami, M., Esaki, K., Kime, R., & Katsumura, T. (2005). Muscle oxidative metabolism accelerates with mild acidosis during incremental intermittent isometric plantar flexion exercise. Dynamic Medicine, 4, 1-14.
    Hug, F., Bendahan, D., Le Fur, Y., Cozzone, P. J., & Grelot, L. (2004). Heterogeneity of muscle recruitment pattern during pedaling in professional road cyclists: a magnetic resonance imaging and electromyography study. European Journal of Applied Physiology, 92, 334-342.
    Hug, F., Faucher, M., Kipson, N., & Jammes, Y. (2003). EMG signs of neuromuscular fatigue related to the ventilatory threshold during cycling exercise. Clinical Physiology and Functional Imaging, 23(4), 208-214.
    Hug, F., Laplaud, D., Lucia, A., & Grelot, L. (2005). EMG threshold determination in eight lower limb muscles during cycling exercise: a pilot study. International Journal of sports Medicine, 456-462.
    Huikuri, H. V., Mäkikallio, T., Airaksinen, K. J., Mitrani, R., Castellanos, A., & Myerburg, R. J. (1999). Measurement of heart rate variability: a clinical tool or a research toy?. Journal of the American College of Cardiology, 34(7), 1878-1883.
    Huang, X., & Ai, Q. (2017). A Comparison of Assessment Methods for Muscle Fatigue in Muscle Fatigue Contraction. In Information Technology and Intelligent Transportation Systems: Volume 2, Proceedings of the 2015 International Conference on Information Technology and Intelligent Transportation Systems ITITS 2015,. Springer International Publishing.
    Ibrahim, N. S., Chen, C. K., Ayub, A., & Muhamad, A. S. (2017). Effects of prolonged running in the heat and cool environments on selected physiological parameters and salivary lysozyme responses. Journal of Exercise Science & Fitness, 15(2), 63-69.
    Ivy, J. L., Withers, R. T., Van Handel, P. J., Elger, D. H., & Costill, D. L. (1980). Muscle respiratory capacity and fiber type as determinants of the lactate threshold. Journal of Applied Physiology, 48(3), 523-527.
    Jones, A. M., & Doust, J. H. (1996). A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. Journal of Sports Sciences, 14(4), 321-327.
    Jürimäe, J., von Duvillard, S. P., Mäestu, J., Cicchella, A., Purge, P., Ruosi, S., Jürimäe, T., & Hamra, J. (2007). Aerobic–anaerobic transition intensity measured via EMG signals in athletes with different physical activity patterns. European Journal of Applied Physiology, 101, 341-346.
    Kang, S. K., Kim, J., Kwon, M., & Eom, H. (2014). Objectivity and validity of EMG method in estimating anaerobic threshold. International Journal of Sports Medicine, 35 (09), 737-742.
    Kaufmann, S., Gronwald, T., Herold, F., & Hoos, O. (2023). Heart Rate Variability-Derived Thresholds for Exercise Intensity Prescription in Endurance Sports: A Systematic Review of Interrelations and Agreement with Different Ventilatory and Blood Lactate Thresholds. Sports Medicine-Open, 9(1), 59.
    Kenneally, M., Casado, A., Gomez-Ezeiza, J., & Santos-Concejero, J. (2021). Training intensity distribution analysis by race pace vs. physiological approach in world-class middle-and long- distance runners. European Journal of Sport Science, 21(6), 819-826.
    Kollmitzer, J., Ebenbichler, G. R., & Kopf, A. (1999). Reliability of surface electromyographic measurements. Clinical neurophysiology, 110(4), 725-734.
    Laughlin, M. H. (1999). Cardiovascular response to exercise. Advances in Physiology Education, 277(6), S244.
    Lamarra, N., Whipp, B. J., Ward, S. A., & Wasserman, K. (1987). Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics. Journal of Applied Physiology, 62(5), 2003-2012.
    Lemire, M., Faricier, R., Dieterlen, A., Meyer, F., & Millet, G. P. (2023). Relationship between biomechanics and energy cost in graded treadmill running. Scientific Reports, 13(1), 12244.
    Lucía, A., Sánchez, O., Carvajal, A., & Chicharro, J. L. (1999). Analysis of the aerobic-anaerobic transition in elite cyclists during incremental exercise with the use of electromyography. British Journal of Sports Medicine, 33(3), 178-185.
    Lucia, A., Vaquero, A. F., Perez, M., Sanchez, O., Chicharro, J. L., Sánchez, V., & Gómez, M. A. (1997). Electromyographic response to exercise in cardiac transplant patients: a new method for anaerobic threshold determination?. Chest, 111(6), 1571-1576.
    Martini, A. D., Dalleck, L. C., Mejuto, G., Larwood, T., Weatherwax, R. M., & Ramos, J. S. (2022). Changes in the Second Ventilatory Threshold Following Individualised versus Standardised Exercise Prescription among Physically Inactive Adults: A Randomised Trial. International Journal of Environmental Research and Public Health, 19(7), 3962.
    McGrath, E., Mahony, N., Fleming, N., Raleigh, C., & Donne, B. (2021). Do critical and functional threshold powers equate in highly-trained athletes?. International Journal of Exercise Science, 14(4), 45.
    Mello, R. G., Oliveira, L. F., & Nadal, J. (2006). Detection of the anaerobic threshold by surface electromyography. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 6189-6192). IEEE.
    Millet, G. P., Vleck, V. E., & Bentley, D. J. (2009). Physiological differences between cycling and running: lessons from triathletes. Sports Medicine, 39, 179-206.
    Moore, I. S. (2016). Is there an economical running technique? a review of modifiable biomechanical factors affecting running economy. Sports Medicine, 46(6), 793-807.
    Moore, I. S., Ashford, K. J., Cross, C., Hope, J., Jones, H. S., & McCarthy-Ryan, M. (2019). Humans optimize ground contact time and leg stiffness to minimize the metabolic cost of running. Frontiers in Sports and Active Living, 1, 53.
    Moritani, T., & Muro, M. (1987). Motor unit activity and surface electromyogram power spectrum during increasing force of contraction. European Journal of Applied Physiology and Occupational Physiology, 56, 260-265.
    Morris, J. R. W. (1973). Accelerometry—A technique for the measurement of human body movements. Journal of Biomechanics, 6(6), 729-736.
    Munari, D., Pedrinolla, A., Smania, N., Picelli, A., Gandolfi, M., Saltuari, L., & Schena, F. (2018). High-intensity treadmill training improves gait ability, VO2peak and cost of walking in stroke survivors: preliminary results of a pilot randomized controlled trial. European Journal of Physical and Rehabilitation Medicine, 54(3), 408–418.
    Navarro, V. T., Díaz-Pintado, J. V. S. A., Piero, D. W. D., & Olmedo, F. H. (2023). Usefulness of V˙ O 2 Kinetics and Biomechanical Parameters as Predictors of Athlete’s Performance in 800 m Running Race. Sports, 11(1), 15.
    Neves, L. N. S., Gasparini Neto, V. H., Araujo, I. Z., Barbieri, R. A., Leite, R. D., & Carletti, L. (2022). Is There Agreement and Precision between Heart Rate Variability, Ventilatory, and Lactate Thresholds in Healthy Adults?. International Journal of Environmental Research and Public Health, 19(22), 14676.
    Paquette, M. R., Napier, C., Willy, R. W., & Stellingwerff, T. (2020). Moving Beyond Weekly "Distance": Optimizing Quantification of Training Load in Runners. Journal of Orthopaedic and Sports Physical Therapy, 50(10), 564-569. doi:10.2519/jospt.2020.9533
    Patoz, A., Lussiana, T., Breine, B., Gindre, C., & Malatesta, D. (2023). Accurate estimation of peak vertical ground reaction force using the duty factor in level treadmill running. Scandinavian Journal of Medicine & Science in Sports, 33(2), 169-177.
    Peserico, C. S., da Silva, D. F., & Machado, F. A. (2014). Heart rate deflection point determined by Dmax method is reliable in recreationally-trained runners. Arch Med Deporte, 33(3)(168-174).
    Piucco, T., Diefenthaeler, F., Prosser, A., & Bini, R. (2020). Validity of different EMG analysis methods to identify aerobic and anaerobic thresholds in speed skaters. Journal of Electromyography and Kinesiology, 52, 102425.
    Pokan, R., Hofmann, P., Von Duvillard, S. P., Beaufort, F., Schumacher, M., Fruhwald, F. M.& Schmid, P. (1997). Left ventricular function in response to the transition from aerobic to anaerobic metabolism. Medicine and Science in Sports and Exercise, 29(8), 1040-1047.
    Potvin, J. R., & Bent, L. R. (1997). A validation of techniques using surface EMG signals from dynamic contractions to quantify muscle fatigue during repetitive tasks. Journal of Electromyography and Kinesiology, 7(2), 131-139.
    Quinonez, M., González, F., Morgado-Valle, C., & DiFranco, M. (2010). Effects of membrane depolarization and changes in extracellular [K+] on the Ca2+ transients of fast skeletal muscle fibers. Implications for muscle fatigue. Journal of Muscle Research and Cell Motility, 31(1), 13-33.
    Sandoo, A. (2021). A Brief History of the Anaerobic Threshold Concept. ACSM's Health & Fitness Journal, 25(3), 7-10.
    Santos-Concejero, J., Granados, C., Irazusta, J., Bidaurrazaga-Letona, I., Zabala-Lili, J., Tam, N., & Gil, S. (2013). Differences in ground contact time explain the less efficient running economy in North African runners. Biology of Sport, 30(3), 181.
    Schützenhöfer, M., Birnbaumer, P., & Hofmann, P. (2023). Accelerometer-Derived Intensity Thresholds Are Equivalent to Standard Ventilatory Thresholds in Incremental Running Exercise. Sports, 11(9), 171.
    Seuter, M., Pfeiffer, M., Bauer, G., Zentgraf, K., & Kray, C. (2017). Running with technology: evaluating the impact of interacting with wearable Devices on Running Movement. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(3), 1-17.
    Seuter, M., Pollock, A., Bauer, G., & Kray, C. (2020). Recognizing running movement changes with quaternions on a sports watch. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(4), 1-18.
    Smyth, B., Muniz-Pumares, Daniel (2020). Calculation of critical speed from raw training data in recreational marathon runners. Science in Sports Exercise, 52(12), 2637.Weyand, P. G., Sandell, R. F., Prime, D. N., & Bundle, M. W. (2010). The biological limits to running speed are imposed from the ground up. Journal of Applied Physiology, 108(4), 950-961.
    Steinhilber, B., Seibt, R., Gabriel, J., Brountsou, J., Muljono, M., Downar, T., ... & Rieger, M. A. (2022). Effects of face masks on physical performance and physiological response during a submaximal bicycle ergometer test. International Journal of Environmental Research and Public Health, 19(3), 1063.
    Stevens, M. L., Gupta, N., Eroglu, E. I., Crowley, P. J., Eroglu, B., Bauman, A., ... & Stamatakis, E. (2020). Thigh-worn accelerometry for measuring movement and posture across the 24-hour cycle: a scoping review and expert statement. BMJ Open Sport & Exercise Medicine, 6(1), e000874.
    Søgaard, K., Gandevia, S. C., Todd, G., Petersen, N. T., & Taylor, J. L. (2006). The effect of sustained low‐intensity contractions on supraspinal fatigue in human elbow flexor muscles. The Journal of Physiology, 573(2), 511-523.
    Støa, E. M., Helgerud, J., Rønnestad, B. R., Hansen, J., Ellefsen, S., & Støren, Ø. (2020). Factors influencing running velocity at lactate threshold in male and female runners at different levels of performance. Frontiers in Physiology, 11, 585267.
    Tanaka, H., Monahan, K. D., & Seals, D. R. (2001). Age-predicted maximal heart rate revisited. Journal of the american college of cardiology, 37(1), 153-156.
    Taboga, P., Giovanelli, N., Spinazzè, E., Cuzzolin, F., Fedele, G., Zanuso, S., & Lazzer, S. (2022). Running power: lab based vs. portable devices measurements and its relationship with aerobic power. European Journal of Sport Science, 22(10), 1555-1568.
    Taylor, A. D., & Bronks, R. (1994). Electromyographic correlates of the transition from aerobic to anaerobic metabolism in treadmill running. European Journal of Applied Physiology and Occupational Physiology, 69, 508-515.
    Tenforde, A. S., Borgstrom, H. E., Outerleys, J., & Davis, I. S. (2019). Is cadence related to leg length and load rate? Journal of Orthopedic & Sports Physical Therapy, 49(4), 280-283.
    Thompson, M. A. (2017). Physiological and biomechanical mechanisms of distance specific human running performance. Integrative and Comparative Biology, 57(2), 293-300.
    Tokmakidis, S. P., & Leger, L. (1987). External validity of the Conconi's heart rate anaerobic threshold as compared to the lactate threshold. Univ.
    Tikkanen, O., Hu, M., Vilavuo, T., Tolvanen, P., Cheng, S., & Finni, T. (2012). Ventilatory threshold during incremental running can be estimated using EMG shorts. Physiological Measurement, 33(4), 603.
    Van den Berghe, P., Six, J., Gerlo, J., Leman, M., & De Clercq, D. (2019). Validity and reliability of peak tibial accelerations as real-time measure of impact loading during over-ground rearfoot running at different speeds. Journal of Biomechanics, 86, 238-242.
    Vannatta, C. N., Heinert, B. L., & Kernozek, T. W. (2020). Biomechanical risk factors for running-related injury differ by sample population: A systematic review and meta-analysis. Clinical Biomechanics, 75, 104991.
    Venturini, E., & Giallauria, F. (2022). Factors influencing running performance during a marathon: breaking the 2-h barrier. Frontiers in Cardiovascular Medicine, 9, 856875.
    Voet, N., Saris, C. G., Thijssen, D. H., Bastiaans, V., Sluijs, D. E., & Janssen, M. M. (2022). Surface Electromyography Thresholds as a Measure for Performance Fatigability During Incremental Cycling in Patients With Neuromuscular Disorders. Frontiers in Physiology, 13, 821584.
    Viitasalo, J. T., Luhtanen, P., Rahkila, P., & Rusko, H. (1985). Electromyographic activity related to aerobic and anaerobic threshold in ergometer bicycling. Acta Physiologica Scandinavica, 124(2), 287-293.
    Wang, J., Sun, S., & Sun, Y. (2021). A muscle fatigue classification model based on LSTM and improved wavelet packet threshold. Sensors, 21(19), 6369.
    Willy, R. W. (2018). Innovations and pitfalls in the use of wearable devices in the prevention and rehabilitation of running related injuries. Physical Therapy in Sport, 29, 26-33.

    下載圖示
    QR CODE