研究生: |
莊永忠 |
---|---|
論文名稱: |
分布型水文-力學連結模式於山地集水區崩塌潛勢動態分析之應用 |
指導教授: |
沈淑敏
Shen, Su-Min 廖學誠 Liaw, Shyue-Cherng |
學位類別: |
博士 Doctor |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 173 |
中文關鍵詞: | 崩塌潛勢 、動態分析 、地形指標 、分布型水文模式 、無限邊坡模式 |
論文種類: | 學術論文 |
相關次數: | 點閱:198 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
臺灣山地集水區地形陡峭且地質脆弱,加上每年颱風與豐沛雨量影響,致使崩塌事件頻傳,崩塌潛勢預測因而成為集水區災害防治與經營管理之重點項目。然由於影響崩塌發生之氣候與地文因子具高度時空變異性與不確定性,故如何於動態分析基礎上進行不同尺度之山地集水區崩塌潛勢模擬,即為值得探討之議題。有鑑於此,本研究以降雨型淺層滑動崩塌為對象,針對小面積蓮華池4 號與5號集水區,以及大面積石門水庫玉峰流量站上游集水區,以集水區土壤飽和度動態變化為連結因子,探討具崩塌潛勢動態分析能力之分布型水文-力學連結模式,於不同尺度集水區之應用方式與模擬效度。
在水文動態分析方面,本研究結果顯示若以分布型水文模式搭配連續性氣候資料進行模擬,在颱風與高降雨量時期之模擬效度明顯優於乾季,而土壤厚度與水力傳導度設定則為影響成果正確性之主要因素,且在小面積且地文因子均一性高之集水區,採用全域一致之地表覆蓋、土壤厚度、土壤屬性與水力傳導度設定即可達到80%至87% 模擬效度;而地文因子複雜程度高之大面積集水區,其模擬過程則必須考量地文因子時空變異性,始能達到較佳成效。除此之外,本研究亦發現集水區邊坡範圍之地形指標,與各時期邊坡土壤飽和度均具有高度線性正相關,此將有助於簡化複雜之水文分析流程。
在崩塌潛勢動態分析方面,本研究透過土壤飽和度空間分布動態變化連結無限邊坡模式,再透過蒙地卡羅重複模擬與機率轉換,以產出集水區不同時期崩塌潛勢動態變化。而將模擬結果與實際崩塌位置進行套疊檢核後,發現模擬結果約達62.1%至78.2%之動態模擬效度,且滑動面深度與地質參數設定均會造成顯著影響。總體而言,本研究流程具有超前性預測之能力,有助集水區經營管理者進行防救災分析與規劃,並能提升崩塌預測之即時性。
中文文獻
工研院能資所,1992,崩塌地調查、規劃與設計手冊(地滑篇),水土保持局委託編撰,共214頁。
工研院能資所,1998,石門水庫集水區崩塌地與土地利用航測調查計畫整體報告書,臺灣省北區水資源局,共114頁。
內政部營建署市鄉規劃局,2005,石門水庫集水區土地利用整體規劃報告,共123頁。
中華水土保持學會,1990,石門水庫集水區第二階段治理規劃,石門水庫管理局,1-3頁。
石再添、鄧國雄、張瑞津、黃朝恩、石慶德、楊貴三、許民陽、曾正雄,2008,地學通論-自然地理概論,吉歐文教事業有限公司,共429頁。
行政院農業委員會水土保持局,1992,水土保持手冊,行政院農業委員會,共185頁。
行政院農業委員會林業試驗所,1997,林業試驗所蓮華池分所氣象資料(1961- 1996),林業叢刊第76號,共449頁。
李三畏,1984,臺灣崩塌問題探討,地工技術,7:43-49。
李光敦、洪夢秋、林怡廷、張進鑫,2006,集水區降雨逕流歷程之連續性模擬,農業工程學報,52(2):2-22。
李錫堤、費立沅、李錦發、林銘郎、董家鈞、張瓊文,2008,石門水庫集水區的山崩與土石流潛感分析,第六屆海峽兩岸山地災害與環境保育學術研討會論文集,共10頁。
沈哲緯、吳秋雅、林彥享、鄭錦桐、陳建宏、邵國士、紀宗吉、張閔翔,2009,運用多變量統計進行台灣中部地區之斜坡單元豪雨誘發山崩潛勢分析,中興工程,103:25-34。
吳久雄、蔡銖華、胡錦地,1989,台灣省山坡地崩坍調查報告,台灣省水土保持局,139頁。
吳俊鋐,2004,降雨引發邊坡崩塌潛勢評估模式之建構,國立中興大學水土保持學系博士論文,共250頁。
吳俊鋐、陳樹群,2004,崩塌潛勢預測方法於臺灣適用性之初探,中華水土保持學報,36(4):295-306。
何春蓀,1986,臺灣地質概論-臺灣地質圖說明書,經濟部中央地質調查所,共164頁。
林文賜、林昭遠、黃碧慧、周文杰,2008,應用類神經網路及模糊理論於崩塌地萃取模式建立之研究,中華水土保持學報,39(1):1-9。
林孟龍、林俊全,1998,蘭陽溪上游集水區(家源橋以上)崩山之規模與頻率分布關係,臺灣之第四紀第七次研討會論文集,34-38。
林昭遠、吳瑞鵬、林文賜,2001,921震災崩塌地植生復育監測與評估,中華水土保持學報,32(1):59-66。
林致遠,1989,坡地社區開發對下游水文因子影響之研究,國立中興大學水土保持學系碩士論文,共127頁。
林慶偉,1996,南投縣和社地區崩塌發育之地質影響因子,地工技術,57:5-16。
周惠成、劉艷麗,2006,TOPMODEL模型中地形指數計算方法的研究進展,人民黃河,28(6):24-26。
周憲德、廖偉民、姚善文,2002,發生土石流之臨界降雨特性分析,中華土木水利工程學刊,14(1):1-8。
柯勇全、陳樹群,2004,特定水土保持區之過去、現在與未來,中華水土保持學報,35(2):165-174。
胡慧蘭,2006,水里溪集水區環境及水文特性與整體保育治理對策之研究,國立中興大學水土保持學系碩士論文,共106頁。
洪如江,1996,賀伯颱風、新中橫公路與坍方及土石流災害,地工技術,57:25-30。
洪如江、林美聆、陳天健、王國隆,2000,921集集大地震相關的坡地災害、坡地破壞特性、與案例分析,地工技術,81:17-32。
洪志遠,2007,蓮華池集水區不飽和土壤的水力特性,國立臺灣大學森林環境暨資源學研究所碩士論文,共67頁。
姜壽浩、徐美玲,2006,以局部穩定條件率定之邊坡土壤厚度估測模式,地理學報,44:23-38。
范正成、吳明豐、彭光宗,1999,豐丘土石流發生區臨界降雨線之研究,地工技術,74 : 39-46。
孫維芳、陳紫娥,2003,海岸山脈北段公路沿線地質特性與邊坡崩塌關係,中華水土保持學報,34(4): 295-302。
徐美玲,1995,預測潛在岩屑滑崩的網格數值地形模式,地理學報,19:1-15。
許中立,1998,降雨滲透對邊坡穩定影響之研究,國立中興大學水土保持學研究所博士論文,共225頁。
陳主惠、張守陽、周憲德、李伯亨,2004,入滲對非飽和邊坡淺層崩塌發生機制之研究,中華水土保持學報,35(1):69-77。
陳本康,2005,石門水庫集水區崩塌特性及潛勢評估研究,國立中興大學水土保持學系博士論文,共230頁。
陳宏宇,2000,山崩地裂與地質環境,土木技術,25:46-52。
陳明杰,1993,蓮華池地區不同林相土壤孔隙分布特性之研究,中華林學季刊,26(2):63-77。
陳明杰,1995,森林試驗集水區集流時間之研究,臺大實驗林研究報告,9(1):1-17。
陳明杰、何正品,1996,蓮華池地區林地土壤水貯留變化之研究,臺大實驗林研究報告,10(1):67-85。
陳明杰、黃襦慧,2006,張力滲透計應用於蓮華池五號集水區土壤水力傳導度測定分析,中華林學季刊,39(2):207-220。
陳信雄,1995,崩塌地調查與分析,國立編譯館,共620頁。
陳信雄、廖學誠、詹進發,1997,網格大小及水流方向對福山集水區地形指標之影響,國立臺灣大學農學院實驗林研究報告,11(2):1-14。
陳聯光、游繁結、陳建元、王俞婷、林聖琪、林又青、李卓倫,2007,石門水庫集水區重大土砂災害探討,中國水土保持科學,5(4):49-55。
陳紫娥,2000,花蓮溪河谷沖積扇之自然環境、土地利用及其土石災害之研究,地理學報,27:55-70。
陳榮河,1999,土石流之發生機制,地工技術,74:21-28。
陳樹群,1999,高強度降雨之坡地集流時間公式,中華水土保持學報,30(2):103-116。
陳樹群、黃兆章,1998,運動波理論建立臺灣森林集水區集流時間之研究,中華水土保持學報,29(1):11-22。
陳樹群、吳俊鋐,2005,集集地震引發九九峰地區之崩塌型態探討,中華水土保持學報,36(1):101-112。
張石角,1987,山坡地潛在危險之預測及其在環境影響評估之應用,中華水土保持學報,18(2):41-62。
張政亮,2004,地理資訊系統應用於蘭陽地區環境地質災害分布之調查分析,蘭陽溪生命史-「宜蘭研究」第五屆學術研討會論文集,宜蘭文獻叢刊,22:73-108。
張瑞津、沈淑敏、劉盈劭,2001,陳有蘭溪四個小流域崩塌與土石流發生頻率之研究,地理研究報告,34:63-83。
張崑宗、劉進金,2006,利用類神經網路方法於高解析衛星影像及地形資料之崩塌地辨識-以九份二山為例,航測及遙測學刊,11(2):161-174。
陸象豫、唐凱軍、古秀宇、黃惠雪,2000,林業試驗所各林區氣候狀況,臺灣林業科學,15(3):429-440。
郭基賢、楊貴三,2005,臺灣地區大型崩塌地之地理特性研究,地圖,15:103-114。
黃正良、廖學誠、金恆鑣、孫正春,2003,蓮華池人工林及天然林集水區土壤水力傳導度之比較(一)-Guelph滲透計法,中華林學季刊36(2):187-198。
黃政恆、陳尊賢,1990,七星山地區兩個火山灰土壤之特性、化育與分類,中國農業化學會誌,28:135-147。
黃誌川、徐美玲,2001,以不同網格數值地形(DTM)解析度和計算方法析取坡度之比較,中華水土保持學報,32(3):199-205。
黃誌川、徐美玲,2003,森林集水區邊坡穩定性評估-以蒙地卡羅模擬無限邊坡模式之參數,地理學報,33:1-18。
黃誌川、高樹基、郭鎮維、李宗祐,地形指數模式在臺灣北部山地集水區降雨逕流之模擬:以橫溪集水區為例,地理研究報告,47:39-58。
黃書禮、龍明成,1993,坡地沖蝕防治成本函數之建立與地利分析之應用,都市與計劃,20(1):89-108。
游中榮,1995,應用地理資訊系統於北橫地區山崩潛感之研究,國立中央大學應用地質研究所碩士論文,共192頁。
游繁結,1990,崩落型土石流之機制研究,行政院國科學委員會防災科技研究報告,NSC-78-0404-P005-06B。
游繁結、吳仁明、翁緯明,2006,礫石層邊坡形成土石流之微地形探討,中華水土保持學報,37(4):329-340
經濟部水利署,2006,水庫集水區蒸發及入滲量觀測與資料品管計畫(1/2),經濟部水利署,共250頁。
經濟部水利署,2007,水庫集水區蒸發及入滲量觀測與資料品管計畫(2/2),經濟部水利署,共765頁。
莊永忠、廖學誠、詹進發、黃正良,2007,不同網格解析度與流向演算法對蓮華池集水區地形指標之影響,地理學報,50:73-100。
葛錦昭、楊炳炎、林淵霖、楊楚淇、漆陞忠,1978,臺灣森林集水區經營試驗初步報告,林業試驗所試驗報告第304號。
廖學誠、盛志澄、黃正良,1998,蓮華池森林及皆伐跡地於諾瑞斯颱風暴雨時水文反應之研究,臺灣林業科學,13(3):237-241。
廖學誠、黃瓊滮、黃正良、林照松,2000,應用地文及水文特性評估集水區相似性之研究,中華林學季刊,33(3):341-353。
葉惠中、盧光輝、陳朝龍,2004,坡地利用生態保育適宜性分析,華岡農科學報,14:103-119。
盧惠生、胡蘇澄,1993,應用Philip入滲模式推估臺灣中部山地土壤入滲,8(4):259-270。
蔣先覺、陳尊賢、林光清、洪富文,1994,臺灣高山森林土壤形態、性質與分類,林業試驗所出版,共391頁。
謝正倫,1991,土石流預警系統之研究,國立成功大學台南水工試驗所研究報告,192頁。
謝玉興,2004,南橫公路邊坡崩壞與降雨量關係研究,臺灣公路工程,30(11):26-45。
謝有忠,1999,陳有蘭溪流域土石流之發育地質控制,國立成功大學地球科學系碩士論文,共120頁。
謝政道,1984,森林土壤對於水資源涵養機能之探討,國立中興大學水土保持系碩士論文,88頁。
賴進貴,1996,數值高度模型與地形計測研究:資料解析度問題,地理學報,20:61-73。
鍾欣翰,2008,考慮水文模式的地形穩定分析-以匹亞溪集水區為例,國立中央大學應用地質研究所碩士論文,共104頁。
臺灣省石門水庫管理局,1976,石門水庫集水區崩坍地航測調查報告,石門水庫管理局。
臺灣省政府農林廳山地農牧局,1983,新竹縣山坡地土壤調查報告書,共125頁。
簡碧梧,1995,臺灣的崩塌地災害,工程環境會刊,6:23-47。
鄭旭涵,2004,山坡地違規使用管理之結構性探討,中華水土保持學報,35(4):361-373。
鄭祈全、吳治達、莊永忠,2007,土地利用變遷與氣候變遷對集水區流量模擬影響之研究-以林試所蓮華池試驗林之蛟龍溪集水區為例,臺灣林業科學,22(4):483-495。
鄭皆達,1996,臺灣上游集水區溪流量的產生機制對洪峰流量估算的影響,水土保持學報,28(3):18-31。
英文文獻
Abbott, M. B., Bathurst, J. C., Cunge, J. O., O’Connell, P. E. and Rasmussen, J., 1986, An introduction to the European Hydrological System- Systeme Hydro- logique Europeen (SHE), Journal of Hydrology, 87: 45-59.
Agnew, L. J., Lyon, S., Gerard-Marchant, P., Collins, V. B., Lembo, A. J., Steenhuis T. S. and Walter, M. T., 2006, Identifying hydrologically sensitive areas: Bridging the gap between science and application, Journal of Environmental Management, 78: 63-76.
Ahnert, F., 1970, Functional relationships between denudation, relief, and uplift in large mid-latitude drainage basine, American Journal of Science, 268: 243-263.
Aleotti, P., 2004, A warning system for rainfall-induced shallow failures. Engineering Geology, 73: 247-265.
Anderson, M.G., Burt, T. P., 1978. Toward more detailed field monitoring of variable source areas, Water Resources Research, 14: 1123-1131.
Antronico, L. and Gullà, G., 2000, Slopes affected by soil slips: validation of an evolutive model. Bromhead EN, Dixon N and Ibsen M-L (Eds.) Landslides in research, theory and practice, Proceedings of the 8th International Symposium on Landslides, 26-30 June 2000, Cardiff, UK, Thomas Telford: 77-84.
Ardizzone, F., Cardinali, M., Galli, M., Guzzetti, F. and Reichenbach, P., 2007, Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar, Natural Hazards Earth System, 7:637–650.
Arnold, J. G., Williams, J. R., Nicks, A. D. and Sammons, N. B., 1990, SWRRB: A basin scale formulation model for soil and water resources management, Texas A & M University Press, College Station, Texas.
Arnold, J. G., Allen, P. M. and Bernhardt, G., 1993, A comprehensive surface- groundwater-flow model, Journal of Hydrology, 142: 47-69.
Arnold, J. G., Williams, J. R., Srinivasan, R., King, K. W. and Griggs, R. H., 1994, SWAT, soil and water assessment tool, USDA, Agriculture Research Service, Temple, Texas 76502.
Barling, R. D., Moore, I. D., and Grayson R. B., 1994, A Quasi-dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content, Water Resources Research, 30 (4): 1029-1044.
Bernier, P. Y., 1985, Variable source areas and storm flow generation: An update of the concept and a simulation effort, Journal of Hydrology, 79: 195-213.
Bell, F. G., Maud, R. R., 2000, Landslides associated with the colluvial soils overlying the Natal Group in the greater Durban region of Natal, South Africa. Environment Geology, 39(9): 1029–1038.
Beven, K. J., 1986, Runoff production and flood frequency in catchments of order n: an alternative approach. In: V. K. Gupta (Ed.), Scale Problems in Hydrology. D. Reidel Publishing Company, Hingham, Mass. pp. 107-31.
Beven, K. J., 1989, Changing Ideas in Hydrology: The case of physically based models. Journal of Hydrology, 105: 157-172.
Beven, K. J. and Binley, A., 1992. The Future of Distributed Models: Model Calibration and Uncertainty Prediction. Hydrological Processes, 6: 279-298.
Beven, K. J., and Kirkby, M. J., 1979, A physically based, variable contributing area model of basin hydrology, Hydrological Sciences Bulletin. 24: 43-69.
Beven, K. J. and Moore, I. D., 1993, Terrain analysis and distributed modeling in hydrology, John Wiley and Sons, pp. 1-34.
Beven, K. J., 1977, Hillslope hydrographs by the finite element method, Earth Surface Processes, 2: 13-28.
Beven, K. J. and Binley, A., 1992, The future of distributed models: Model calibration and uncertainty prediction, Hydrological Processes, 6: 279–298.
Beven, K., Lamb, R., Quinn, P., Romanowicz, R. and Freer, J., 1995, TOPMODEL. In: V. P. Singh(eds). Computer models of watershed hydrology, Water Resources Publications, pp. 627-668.
Bischetti, G. B., Chiaradia, E. A., Simonato, T., Speziali, B., Vitali, B., Vullo, P. and Zocco, A., 2005, Root strength and root area ratio of forest species in lombardy
(Northern Italy), Plant and Soil, 278: 11-22.
Bras, R. L., 1990, An introduction to hydrologic science, Hydrology, 643, Addison- Wesley, Reading, Mass.
Brasington, J. and Richards, K. S., 1998, Interactions between model predictions, parameters and DTM scales for TOPMODEL. Computers and Geosciences. 24: 299-314.
Bresler, E., Russo, D. and Miller, R., 1978, Rapid estimate of unsaturated hydraulic conductivity function, Soil Science Society of America Journal, 42: 170-172.
Brooks, E. S., Boll, J. and McDaniel, P. A., 2007, Distributed and integrated response of a geographic information system-based hydrologic model in the eastern Palouse region, Idaho, Hydrological Processes, 21: 110-122.
Bruneau, P., Gascuel-Odoux, C., Robin, P., Merot, P., and Beven, K., 1995, Sensitivity to space and time resolution of a hydrological model using digital elevation data, Hydrological Processes, 9: 69-81.
Burt, T. P., Butcher, D. P., 1985, Topographic controls of soil moisture distributions, Soil Science, 36: 469-486.
Caine, N., 1980, The rainfall intensity duration control of shallow landslides and debris flow, Geografiska Annaler, 62: 23-27.
Campbell, R. H., 1974, Debris flow originating from soil slips during rainstorms in Southern California, Quaternary Journal of Engineering Geology, 7: 339-349.
Campbell, R. H., 1975, Soil slips, debris flows and rainstorms in the Santa Monica Mountains and vicinity, Southern California, U.S. Geological Survey Professional Paper, 851: 51.
Campus, S., Forlati, F., Sarri, H. and Scavia, C., 2001, Shallow landslides hazard assessment based on multidisciplinary studies. Ho, K. S. and Li, K. S. (Eds.) Geotechnical engineering - Meeting society's needs, Proceedings of the 14th Southeast Asian Geotechnical Conference, 10-14 December 2001. Hong Kong, A.A. Balkema Publishers: 703-8.
Candela, A., Noto, L. and Aronica, G., 2005, Influence of roughness surface in hydrological response of semiarid catchments, Journal of Hydrology, 313: 119-131.
Chaplot V., Walter C., Curmi P., Lagacherie P., and King, D., 2004, Using the topography of the saprolite upper boundary to improve the spatial prediction of the soil hydromorphic index. Geoderma. 123: 343-354.
Chappell, N. A., Vongtanaboon S., Jiang, Y., and Tangtham, N., 2006, Return-flow prediction and buffer designation in two rainforest headwaters, Forest Ecology and Management, 224: 131-146.
Chung, C. F. and Fabbri, A. G., 1999, Probabilistic prediction models for landslide hazard mapping, Photogrammetric Engineering and Remote Seneing, 65: 1389-1399.
Chung, C. F. and Fabbri, A. G., 2003, Validation of spatial prediction models for landslide hazard mapping, Natural Hazards, 30: 451-472.
Clarke, S. and Burnett, K., 2003, Comparison of digital elevation models for aquatic data development, Photogrammetric Engineering and Remote Sensing, 69(12): 1367-1375.
Collison, A., Wade, S., Griffiths, J. and Dehn, M., 2000, Modelling the impact of predicted climate change on landslide frequency and magnitude in SE England, Engineering Geology, 55(3): 205–218.
Corominas, J., 2000, Landslides and climate, Keynote lecture- In: Proceedings 8th International Symposium on Landslides, (Bromhead E, Dixon N, Ibsen ML, eds). Cardiff: A.A. Balkema, 4: 1–33.
Crawford, N. H. and Linsley, R. K., 1966, Digital simulation in hydrology: Stanford Watershed Model IV. Technical Report 39, Department of Civil Engineering, Stanford University, p. 210.
Crosta, G., 1998, Regionalization of rainfall thresholds: an aid to landslide hazard
evaluation, Environmental Geology, 35(2-3): 131-145.
Crozier, M. J. and Glade. T., 1999, Frequency and magnitude of landsliding: fundamental research issues, Zeitschrift für Geomorphologie N.F., 115: 141–155.
Daba, S., 2003, An investigation of the physical and socioeconomic determinants of soil erosion in the Hararghehighlands, eastern Ethiopia. Land Degradation and Development 14 (1): 69–81.
Dai, F. C. and Lee, C. F., 2001, Terrain-based mapping of landslide susceptibility using a geographical information system: a case study, Canadian Geotechnical Journal, 38: 911-923.
Dai, F. C. and Lee, C. F., 2002, Landslides on natural terrain - physical characteristics and susceptibility mapping in Hong Kong. Mountain Research and Development 22: 40-7.
Dai, F. C., Tham, L. G., Lee, C.F., Ng, K. C. and Shum, W. L., 2004, Logistic regression modeling of storm-induced shallow landsliding in time and space on natural terrain of Lantau Island, Hong Kong, Bulletin of Engineering Geology and the Environment, 63: 315-327.
D'Amato Avanzi, G., Giannecchini, R. and Puccinelli, A., 2000, Geologic and geomorphic factors of the landslides triggered in the Cardoso T. basin (Tuscany, Italy) by the 19th June 1996 intense rainstorm. Bromhead, E.N., Dixon, N. and Ibsen, M. L. (Eds.) Landslides in research, theory and practice, Proceedings of the 8th International Symposium on Landslides, 26-30 June 2000. Cardiff, UK, Thomas Telford: 381-6.
Dabney, S. and Selim, H., 1987, Anisotropy of a fragipan soil: vertical vs. horizontal hydraulic conductivity, Soil Science Society of America Journal, 51: 3-6.
Department of the Environment (DoE), 1990, Development on unstable land, PPG1, London: HMSO, 1990.
Desbarats, A. J., Logan, C. E., Hinton, M. J., and Sharpe, D. R., 2002, On the Kriging of water table elevations using collateral information from a digital elevation model, Journal of Hydrology, 255: 25-38.
Dietrich, W. E., Wilson, C. J., and Reneau, S. L., 1986, Hollows, colluvium, and landslides in soil-mantled landscapes. In: A. D. Abraham (ed.) Hilllslope Processes, Allen and Unwin, pp. 361-388.
Dietrich, W. E., Reiss, R., Hsu, M. L., and Montgomery, D. R., 1995, A process-based model forcolluvial soil depth and shallow landsliding using digital elevation data, Hydrological Processes, 9: 383–400.
Donigian, A. S., Bicknell, B. R. and Imhoff, J. C., 1995, Hydrologic Simulation Program - FORTRAN (HSPF), Water Resources Publications, Littleton, Colorado.
Dunne, T. and Black, R., 1970, Partial area contributing to storm runoff in a small New-England watershed, Water Resources Research, 6(5): 1296-1311.
Elbadaway, O., 1995, Use of GIS to assess hydrologic similarity. Colorado State University, Thesis.
Feldpausch, T. R., McDonald, A. J., Passos, C. A. M., Lehmann, J. and Riha, S. J., 2006, Biomass, harvestable area, and forest structure estimated from commercial timber inventories and remotely sensed imagery in southern Amazonia, Forest, Ecology and Management, 233(1): 121-132.
Fookes, P. G., Sweeney, M., Manby, C. N. D., and R. P., Martin, 1985, Geological and geotechnical engineering aspects of low-cost roads in mountainous terrain”, Engineering Geology, 21: 1-152.
Frankenberger, J. R., Brooks, E. S., Walter, M. T., Walter, M. F. and Steenhuis, T. S., 1999, A GIS-based variable source area model, Hydrological Processes, 13(6): 805-822.
Freeze, R. A. and Harlan, R. L., 1969, Blueprint for a physically-based digitally simulated hydrologic response model, Journal of Hydrology, 9: 237-258.
Gao, J. and Lo, C.P., 1991, GIS modeling of influence of topography and morphology on landslide occurrence in Nelson County, Virginia, U.S.A., Earth Surface Process and Landforms, 18: 579-591.
Gasmo, J. M., Rahardjo, H.and Leong, E. C., 2000, Infiltration effects on stability of a residual soil slope, Computers and Geotechnics, 26(2): 145-165.
Gilbert, G. K., 1909, The convexity of hilltops, Journal of Geology, 17: 344-350.
Glade, T., Crozier, M. J. and Smith, P., 2000, Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical Antecedent Daily Rainfall Model.- Pure and Applied Geophysics, 157: 1059-1079.
Gorsevski, P. V., Gessler, P. E., Boll, J., Elliot, W. J. and Foltz, R. B., 2006, Spatially and temporally distributed modeling of landslide susceptibility, Geomorphology, 80(3-4): 178-198
Govi, M. and Sorzana, P. F., 1980, landslides susceptibility as a function of critical rainfall amount in Piedmont basin (NW Italy), Studia Geomorphological Carpatho-Balcanica, 43: 43-61
Grayson, R.B., Moore, I.D. and McMahon, T.A., 1992, Physically based hydrologic modeling 2. Is the concept realistic?, Water Resources Research, 28: 2659-2666.
Güntner, A., Seibert, J., Uhlenbrook, S., 2004, Modeling spatial patterns of saturated areas: An evaluation of different terrain indices. Water Resource Research, 40(5): 1-19.
Guzzetti, F., Peruccacci, S., Rossi, M. and Stark, C. P., 2007, Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and Atmospheric Physics, 98: 39–267.
Guzzetti, F, Peruccacci, S, Rossi, M, Stark, C. P., 2008, The rainfall intensity-duration control of shallow landslides and debris flows: an update, Landslides, 5: 3-17.
Haith, D. A., Mandel, R. and Wu, R. S., 1992, Generlized watershed loading functions version 2.0: User’s manual, Techical Report, Department of Agricultural and Biological Engineering, Cornell University, Ithaca, New York.
Haith, D. A. and Shoemaker, L. L., 1987, Generlized watershed loading functions for stream flow nutrients, Water Resources Bulletin, 23:471-478.
Hammond, C., Hall, D., Miller, S., and Swetik, P., 1992, Level I stability analyses (LISA) documentation for version 2.0. Gen. Tech. Rep. INT-285. U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Ogden, Utah, p.190.
Hargreaves, G. and Samani, Z., 1985, Reference crop evapotranspiration from temperature, Applied Engineering in Agriculture, 1: 96-99.
Harr, R. D., 1977. Water Flux in Soil and Subsoil on a Steep Forested Slope. J. of. Hydrology 33: 37-58.
Heimsath, A. M., Dirtrich, W. E., Nishiizumi, K. and Finkel, R. C., 1997, The soil production function and landscape equilibrium, Nature, 388: 358-361.
Henderson, F. M. and R. A. Wooding, 1964, Overland Flow and Groundwater from a Steady Rainfall of Finite Duration, Journal of Geophysical Research, 69(8): 1530-1540.
Hewlett, J. D. and Hibbert, A. R., 1967, Factors affecting the response of small watersheds to precipitation in humid regions, Forest Hydrology, pp. 275-290.
Hewlett, J. D. and Nutter, W.L., 1970, Varying source area of streamflow from upland basins. In: Interdisciplinary aspects of watershed management. American Society of Civil Engineers, New York, pp. 65-83.
Holm, K., Bovis, M. and Jakob, M., 2004, The landslide response of alpine basins to post-Lille Ice Age glacial thinning and retreat in sothwestern British Columbia, Geomorphology, 57: 201-16.
Holmgren, P., 1994, Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation, Hydrological Processes, 8: 327-334.
Horton, R. E., 1933, The role of infiltration in the hydrologic cycle, Transactions of American Geophysical Union, (14): 446–460.
Horton, R. E., 1940, An approach toward a physical interpretation of infiltration capacity, Soil Science Society of America Proceedings, 4: 399-417.
Hungr, O., Evan, S. G., Bovis, M. and Hutchinson, J.N. (2001), Review of the classification of landslides of the flow type, Environmental Engineering Geoscience, VII, pp. 221-238.
Hutchinson, J. N., 1988, General Report: Morphological and Geotechnical Geology and Hydrogeology. In Proc., Fifth International Synposium on Landslides (C. Bonnard, ed.), A.A. Balkema, Rotterdam,Netherlands, 1, pp. 3-35.
Ibbitt, R. and Woods, R., 2004, Re-scaling the topographic index to improve the representation of physical processes in catchment models, Journal of hydrology, 293: 205-218.
Innes, J. L. 1983, Debris Flows, Progress in Physical Geography, 7: 469-501
Johnson, M. S., 2001, Comparative analysis of two watershed hydrologic models for a central New-York state watershed: Hydrological Simulation Program – Fortran (HPSF) and the Soil Moisture Routing Model (SMR), M. Sc. Dissertation, Cornell University, Ithaca, New York, USA.
Johnson, M. S., Coon, W. F., Mehta, V. K., Steenhuis, T. S., Brooks, E. S. and Boll, J., 2003, Application of two hydrologic models with different runoff mechanisms to a hillslope dominated watershed in the northeastern US: a comparison of HSPF and SMR, Journal of Hydrology, 284: 57-76.
Keefer, D. K., 1984 Landslides Caused by Earthquakes, Geological Society of America Bulletin, 95, pp. 406-421.
Kim K. H., Lee H., Kim W., Jung S. W., and Kim S. H., 2002, The effects of time scale variation on the runoff calculation of TOPMODEL, Journal of Korea Water Resources Association, 35(2): 125-136.
Kitanidis, P. K. and Bras, R. L., 1980, Real-Time Forecasting With a Conceptual Hydrologic Model 2. Applications and Results, Water Resources Research, 16(6): 1034-1044.
Kuo, W. L., Steenhuis, T. S., McCulloch, C. E., Mohler, C. L., Weinstein, D. A., DeGloria, S. D. and Swaney, D. P., 1999, Effect of grid size on runoff and soil moisture for a variable-source-area hydrology model, Water Resources Research, 35: 3419-3428.
Kumar, P., Verdin, K. L. and Greenlee, S. K., 2000, Basin level statistical properties of topographic index. for North America, Advances in Water Resources, 23: 571-578.
Ladson, A. R. and Moore, I. D., 1992, Soil water prediction on the Konza Prairic by microwave remote sensing and topographic attributes, Journal of Hydrology, 138: 385-407.
Lan, H. X., Zhou, C. H., Wang, L. J., Zhang H. Y. and Li, R. H., 2004, Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China, Engineering Geology, 76(1-2): 109-128.
Lee, S. and Min, K., 2001, Statistical analysis of landslide susceptibility at Yongin, Korea, Environmental Geology, 40: 1095-1113.
Lin, H. S., Kogelmann, W., Walker, C. and Burns, M.A., 2006, Soil moisture patterns in a forested catchment: A hydropedological perspective, Geoderma, 131: 345-368.
Lyon, S. W., Walter, M. T., Gérard-Marchant, P. and Steenhuis T. S., 2004, Using a topographic. index to distribute variable source area runoff predicted with the SCS-curve number equation, Hydrological Processes, 18(15): 2757-2771.
Marchant, P. G., Hively, W. D. and Steenhuis, T. S., 2006, Distributed hydrological modeling of total dissolved phosphorus transport in an agriculture landscape, Part I: distributed runoff generation, Hydrology and Earth System Sciences, 10: 245-261.
Mario, P., Randall, W. and Jibson, A., 2000, Seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January,1994 Northridge,California earthquake, Engineering Geology, 58: 251-270.
McCarty, T., 1980, A field study of water flow over and through a shallow, sloping, heterogeneous soil, Ph. D. dissertation, Cornell University, Ithaca, New York, USA.
McCarthy, G. T., 1939, The unit hydrograph and flood routing. US Corps Engineers Office, Providence,. Rhode Island, U.S.A.
Merot, P. H., Squividant, H., Aurousseau, P., Hefting, M., Burt, T., Maitre, V., Kruk, M., Butturini, A., Thenail, C. and Viaud V., 2003, Testing a climato-topographic index for predicting wetlands distribution along an European climate gradient, Ecological Modelling, 163: 51-71.
Mehta, V. K., 2001, A multi-layered soil moisture routing (SMR) model applied to distributed hydrological modeling in the Castkills, M. Sc. Dissertation, Cornell University, Ithaca, New York, USA, p. 6, 18, 23.
Mehta, V. K., Walter, M. T., Brooks, E. S., Steenhuis, T. S., Johnson, M. S., Walter, M. F., Boll, J. and Thongs, D., 2004, Application of SMR for modeling watersheds in the Catskills Mountains, Environmental Modeling and Assessment, 9: 77-89.
Montgomery, D. R., and Dietrich, W. E., 1994, A Physically-Based Model for the Topographic Control on Shallow Landsliding, Water Resources Research, 30: 1153-1171.
Mohr, O., 1900, Welche Umstande bedingen die Elastizitatsgrenze und den bruch eines materials, Zeitschrift des Vereins Deutscher Ingenieure, 44: 1524-1530.
Moore, I. D., Burch, G. J. and Mackenzie, D. H., 1988, Topographic effects on the distribution of surface soil water and the location of ephemeral gullies. Transactions of the American Agriculture Engineering, 31(4): 1098-1107.
Moore, I. D., Grayson, R. B. and Landson, A. R., 1991, Digital terrain modeling : a review of hydrological , geomorphological, and biological applications. Hydrological Process. 5: 3-30.
Moore, I. D., Lewis, A. and Gallant, J. C., 1993, Terrain attribute: Estimation methods and scale effect, In: Jakeman, A. J., Beck, M. B. and McAleer, M. J. C. (eds.): Modelling Change in Environmental Systems, New York, Wiley, pp. 189-214.
Nash, J. E. and Sutcliffe, J. V., 1970, River flow forecasting through conceptual models, Part 1 – A discussion of principles, Journal of Hydrology, 10: 238-250.
O`Callaghan, J. F. and Mark, D. M., 1984, The extraction of drainage networks from digital elevation data, Computer Vision, Graphics, and Image Processing, 28: 323-344.
O’Loughlin, E. M., 1986, Prediction of surface saturation zone in watural catchments by topographic analysis, Water Resources Research, 22(5): 794-804.
Ohlmacher, G. C. and Davis, J. C., 2003, Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA: Engineering Geology, 69: 331-343.
Pack, R. T., 1995, Statistically-based terrain stability mapping methodology for the Kamloops Forest Region, British Columbia, Proceedings of the 〖48〗^th Canadian
Geotechnical Conference, Canadian Geotechnical Society, Vancouver, B.C., pp. 617 -624.
Pack, R. T., Tarboton, D. G., and Goodwin, C. N., 1998, The SINMAP approach to terrain stability mapping. Congress of the international association of engineering geology, Vancouver, British Columbia, Canada, 21-25 September 1998.
Parise M. and Jibson R. W., 2000, A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January, 1994 Northridge, California earthquake, Engineering Geology, 58(3): 251-270.
Pellenq, J., Kalma, J. and Boulet G., 2003, A disaggregation scheme for soil moisture based on topography and soil depth, Journal of Hydrology, 276: 112-127.
Peters, N. E., Freer, J., and Beven, K. J., 2001, Modeling hydrologic responses in a small forested watershed by a new dynamic TOPMODEL (Panola Mountain, Georgia, USA). In: S. Uhlenbrook, C. Leibundgut, and J. J. McDonnell (eds.), Runoff Generation and Implications for River Basin Modeling, Freiburger Schriften zur Hydrologie. Band 13: 318-325.
Pilesjo¨, P., Persson, A. and Harrie, L., 2006, Digital elevation data for estimation of potentialwetness in ridged fields - Comparison of two different methods, Agricultural Water Management, 79: 225-247.
Polemio, M.,Sdao, F., 1999, The role of rainfall in the landslide hazard: the case of the Avigliano urban area (Southern Apennines, Italy), Engineering Geology, 53: 297-309.
Prasad, A., Luce, C., Tarboton, D. G. and Black, T., 2005, Analysis of Forest Road Sediment Production and Stream Impacts, Proceedings, 25th ESRI International Users Conference, San Diego, California, July 25-29.
Quinn, P., Beven, K., Chevallier, P. and Planchon, O., 1991, The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models, Hydrological Processes, 5: 59-79.
Quinn, P. F., Beven, K. J. and Lamb, R., 1995, The ln(a/tanB) index: how to calculate it and how to use it within the TOPMODEL framework, Hydrological Processes, 9: 161-182.
Raaflaub, L. D. and Collins, M. J., 2006, The effect of error in gridded digital elevation models on the estimation of topographic parameters. Environmental Modelling and Software, 21(5): 710-732.
Ragan, R. M. and Duru, J. O., 1972, Kinematic Wave Nomograph for Times of Concentration, Journal of Hydraulic Division, ASCE, 98(10): 1765-1771.
Reaney, S. M., Bracken, L. J. and Kirkby, M. J., 2007, The use of the connectivity of runoff model (CRUM) to investigate the influence of storm characteristics on runoff generation and connectivity in semi-arid areas, Hydrological Processes, 21: 894-906.
Ritter, D. F., Kochel, R. C. and Miller, J. R., 1995, Process Geomorphology, 3nd edition, Dubuque, Iowa: Wm. C. Brown.
Rodhe, A. and Seibert, J., 1999, Wetland occurrence in relation to topography - a test of topographic indices as moisture indicators, Agricultural and Forest Meteorology, 98-99: 325-340.
Rodriguez, C. F., Bommer, J. J. and Chandler, R. J., 1999, Earthquake-induced landslides:1980-1977, Soil Dynamics and Earthquake Engineering ,18: 325-346.
Schmidt, K. H. and Beyer, I., 2001, factors controlling mass movement susceptibility on the Wellenkalk-scarp in Hesse and Thuringia, Zeitschrift für Geomorphologie, Supplement Band, 125: 43-63.
Scanlon, T. M., Kiely, G. and Quishi, X., 2004, A nested catchment approach for defining the hydrological controls on phosphorus transport, Journal of Hydrology, 291(3-4): 218-231.
Sharpe, C.F.S., 1938, Landslide and Related Phenomena, Cloumbia University Press, New York.
Sidle, R. C., 1992, A theoretical model of the effects of timber harvesting on slope stability, Water Resource Research, 28(7): 1897-1910.
Skempton, A. W., 1970, First-time slide in over-conaolidated clays, Geotechnique, 20: 320-324.
Smith, L. and Wheatcraft, S., 1993, Groundwater flow, In: Maidment, chapter 6, 1-58.
Soil and Water Laboratory, 2003, SMDR- the soil moisture distribution and routing model- documentation version 2.0, Biological and Environment Engineering Department., Cornell University, Ithaca, New York 14853, USA.
Soren, J., 1963, The groundwater resources of Delaware Country, New York, Technology Report, Water Resource Common Bulletin GW-50., USGS, Albany, New York, USA.
Srinivasan, M. S., Hamlett, J. M., Day, R. L., Sams, J. I. and Petersen, G. W., 1998, Hydrologic modeling in two watersheds of Lake Wallenpaupack, Pennsylvania, J. Amer, Water Resources Association, 34: 963-978.
Steenhuis, T. S., Boll, J., Jolles, E., and Selker, J., 1995, Field evaluation of wick and gravity pan sampler, In Evertt, L., Cullen, S., and Wilson L., (Ed.), Handbook of vadose zone characterization and monitoring, Lewis Publishers, Ann Arbor, Michigan, pp. 629–638.
Steenhuis, T. S. and Van Der Molen, W. H., 1986, The Thornwaite-Mather procedure as a simple engineering method to predict recharge, Journal of Hydrology, 84: 221-229.
Suzuki, R., 1977, Slope profiles and classification of slope types. Surveying, 7, 43-50.
Tarboton, D. G., 1997, A new method for the determination of flow directions and contributing areas in grid digital elevation models, Water Resources Research, 33(2): 309-319.
Thornthwaite, C. W. and Mather, J. R., 1955, The Water Balance, Public Climate, 8(3): 86.
Tsukamoto, Y., Ohta, T. and Noguchi, H., 1982, Hydrological and geomorphological studies of debris slides on forested hillslopes in Japan, IAHS Pub. 137: 89-98.
U.S. Army Corps of Engineers (USACE), 1960, Engineering and design: Runoff from snowmelt, Tech. Rep. EM 1110-2-1406, U.S. Army Corps of Engineers, Govt. Printing Office, Washington, D. C., 12.
U.S. Army Corps of Engineers (USACE), 1998, HEC-1 flood hydrograph package user's manual, Hydrologic Engineering Center.
U.S. Army Corps of Engineers (USACE), 2000, HEC-GeoHMS user's manual, Hydrologic Engineering Center.
U.S. Army CERL, 1991, GRASS 4.1 User’s Manual. Construction Engineering Research Laboratory, Champaign, IL.
Van Asch, Th. W. J., Buma, J., Van Beek, L. P. H., 1999. A view on some hydrological triggering systems in landslides. Geomorphology, 30: 25-32.
Van Steijn, H., de Ruig, J. and Hoozemans, F., 1988, Morphological and mechanical aspects of debris flows in parts of the French Alps, Zeitschrift fur Geomorphologie, 32: 143-161.
Vanacker, V., Vanderschaeghe, M., Govers, G., Willems, E., Poesen, J., Decker, J., and De Bievre, B., 2003, Linking hydrological, infinite slope stability and land-use change models through GIS for assessing the impact of deforestation on slope stability in high Andean watersheds, Geomorphology, 52(3-4): 299-315.
Varnes, D. J., 1978, Landslides analysis and control, transportation reasearch board, Washington, Spec. Report., 176.
Walter, M. T., Walter, M. F., Brooks, E. S., Steenhuis, T. S., Boll, J. and Weiler, K. R., 2000, Hydrologically sensitive areas: variable source area hydrology implications for water quality risk assessment, Journal of Soil and Water Conservation, 3: 277-284.
Wang, J., Endreny, T. and Hassett, J., 2005, A flexible modeling package for topographically based watershed hydrology, Journal of Hydrology, 314: 78–91.
Weiler, K., 1997, Determination of the linear bedrock coefficient from historical data.
Wilson, R. C. and Wieczorek, G. F., 1995, Rainfall thresholds for the initiation of debris flows at La Honda, California, Environmental and Engineering Geoscience, 1(1): 11-27.
Western, A. W., Grayson, R. B., Blischl, G., Willgoose, G. R., McMahon, T. A., 1999, Observed spatial organization of soil moisture and its relation to terrain indices, Water Resources Research, 35(3): 797-810 .
Wigmosta M. S., Nijssen, B., Storck, P. and Lettenmaier, D., 2002, The distributed hydrology soil vegetation model, Mathematical models of small watershed hydrology and applications, Water Resources Publications, Colorado.
Wigmosta, M. S., Vail, L. W. and Lettenmaier, D. A., 1994, A distributed hydrology- vegetation model for complex terrain, Water Resources Research, 30:1665-1679.
Wieczorek, G. and Glade, T., 2005, Climatic factors influencing triggering of debris flows.- IN: Jakob, M. and Hungr, O., (eds.): Debris flow hazards and related phenomena.- Springer, Heidelberg, pp. 325-362.
Wieczorek, G. F. and Sarmiento, J., 1983, Significance of storm intensity-duration for triggering debris flows near La Honda,California, Geological Society of America, Abstracts with Programs, 15(5): 289.
Wieczorek, G.F., 1987, Effect of Rainfall Intensity and Duration on Debris Flows in Central Santa Cruz Mountains, California, Flows Avalanches: Process, Recognition and Mitigation, Geological Society of America, Reviews in Engineering Geology, 7: 93-104.
Wolock, D. M. and McCabe Jr., G. J., 1995, Comparison of single and multiple flow direction algorithms for computing topographic parameters in TOPMODEL, Water Resources Research, 31(5): 1315-1324.
Woods, R. A., Sivapalan, M. and Robinson, J. S., 1997, Modeling the spatial variability of surface runoff using a topographic index. Water Resources Research 33: 1061–1073.
Wu, W., and Sidle, R. C., 1995, A distributed slope stability model for steep forested watersheds, Water Resources Research, 31(8): 2097-2110.
Young, R. A., Onstad, C. A., Boesch, D. D. and Anderson, W. P., 1989, AGNPS- a nonpoint-source pollution model for evaluating agricultural watersheds, Journal of Soil and Water Conservation, 44(2): 168-173.
Yalcin, 2007, Rainfall-landslide relationship for East Black Searegion (Turkey), Geophysical Research Abstracts, 9. 01751.
Zollweg, J. A., 1994, Effective Use of Geographic Information Systems for Rainfall- runoff Modeling, Ph.D. dissertation, Cornell University, Ithaca, New York, USA.
Zollweg, J. A., Gburek, W. J. and Steenhuis, T. S., 1996, SmoRMod – A GIS-integrated rainfall-runoff model, Transactions of the ASAE, 39(4): 1299-1307.
日文文獻
大江二郎,1931,李棟山圖幅說明書,臺灣總督府殖產局,第608號。
市川雄一,1930,桃園圖幅說明書,臺灣總督府殖產局。
角屋睦、永井明博,1976,中小河川ソ洪水到達時間,京大防災研年報,19(B-2):143-152。
村井宏、岩崎勇,1975,森林狀態の差異が地表流下,浸透とび侵食に及ぽす影響,林試場研究報告,274:23-84。
池谷浩,1980,土石災害調查法,日本山海堂,39-45。
網頁資料
Berry & Associates Spatial Information Systems, http://www.in novativegis.com/basis /Supplements/BM_Dec_02(2009/08/10瀏覽)
Google Earth Website, http://earth.google.com/intl/zh-TW/(2009/06/10瀏覽)
NRCS, http://soils.usda.gov/(2009/05/06瀏覽)
USGS, http://www.usgs.gov/(2009/05/06瀏覽)
工程地質探勘資料庫查詢系統,http://210.69.81.69/geo/frame/gsb88.cfm
(2009/08/10瀏覽)
中央氣象局,http://www.cwb.gov.tw/(2009/08/10瀏覽)
風雨災害實驗室,http://tlcheng.twbbs.org/Hazard/study/operate/Chap05/ch0501.htm (2009/06/10瀏覽)