研究生: |
翁立衛 |
---|---|
論文名稱: |
動態幾何軟體與幾何解題之問題表徵、過程及反思行為之個案研究 Dynamic software and the problem representations, processes, reflective thinking for problem solving in geometry |
指導教授: |
李田英
Lee, Tein-Ying 任宗浩 Jen, Tsung-Hau |
學位類別: |
博士 Doctor |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 187 |
中文關鍵詞: | 動態幾何軟體 、幾何解題 、問題表徵 、解題過程 、反思行為 |
論文種類: | 學術論文 |
相關次數: | 點閱:170 下載:40 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究比較使用與不使用GSP之解題情境對於幾何解題時間、表徵方式、解題策略與反思行為之影響。採質性研究取向。研究對象取自台北縣市三所學校之四名學生,具高數學學習成就與熟練操作GSP,並非隨機取樣。研究工具有兩項,一為《幾何評量測驗》,內容為四道幾何問題,問題內容包括幾何變換、四點共圓、全等證明及平行線性質,其特色為難度高且圖形複雜。此工具由兩位具有豐富經驗的老師建立專家效度,所建立用以分析解題表徵、過程策略及反思行為之編碼原則的評分者信度(inter-rater reliability)為.82。另一工具為《GSP操作檢定》,該工具之設計係根據本研究之幾何評量測驗中可能用到的GSP操作技能,進行檢測,目的為確認受測者具備相關幾何知識且熟練操作GSP的動作技能。內容為八道作圖題,其評分者信度為.98,重測信度為.80。先施測《GSP操作檢定工具》,通過者進行放聲思考的訓練,實施《幾何評量測驗》,每一道題均有兩位受測者以GSP解題,另兩位以紙筆解題,針對施測內容進行訪談。研究結果如下:一、GSP組的解題者較非GSP組的解題者解題平均時間約快12分鐘,原因在於GSP能提供較固定且清晰、精確與可操作的圖象表徵以及動態操弄圖形的功能,易形成視覺發現;二、GSP環境有利於圖像表徵的形成與操弄,卻可能抑制代數符號的運算;三、紙筆解題者對問題的表徵方式為符號與圖象並重,進而影響其採用多元的解題策略與較多的反思行為;四、使用GSP解題者對問題的表徵方式以圖形為主,解題策略受GSP圖形操弄功能之影響,反思行為中質疑多於預見;五、非GSP解題者的繪圖反應解題者對於問題的整體理解,GSP解題者則透過繪圖理解問題:六、幾何知識、GSP操作技能、空間操弄能力以及與GSP的「對話」能力均為採GSP進行幾何解題成功與否的關鍵因素。研究對於GSP的解題者、幾何教學及未來研究等三方面提出建議。
中文部分
凡異出版社編 (1991) 數學萬花筒。新竹:凡異。
左台益、蔡志仁 (2001) 動態視窗之橢圓教學實驗。 師大學報:科學教育類, 46(1,2), 21-42。
左台益、梁勇能 (2001) 國二學生空間能力與van Hiele 幾何思考層次相關性研究。 師大學報:科學教育類, 46(1,2), 1-20。
林保平 (1996) 動態幾何教學的電腦輔助教材研究(NSC 85-2511-S-133004)。台北: 國科會科學教育發展處。
林保平 (2004) 公切圓之圓心軌跡-用動態幾何軟體探討幾何性質。科學教育月刊, 271, 2-9。
洪萬生 (2004) 教改爭議聲中,證明所為何事?師大學報:科學教育類, 49(1), 1-14。
張景中 (1996) 平面幾何新路。. 台北:九章。
張景中、曹培生 (1996) 從數學教育到教育數學。台北:九章。.
陳其英 (1998) 國一數學資優生問題同構轉化能力及外在表徵對解題之影響。國立台灣師範大學科學教育所碩士論文,台北,未出版。
楊坤原 (1996) 高一學生認知風格, 認知策略,遺傳學知識與遺傳學解題之研究。國立台灣師範大學科學教育所博士論文,台北,未出版。.
劉繕榜 (2000) 國中數學資優生尺規作圖表現之探討。國立台灣師範大學科學教育所碩士論文,台北,未出版。
鄭昭明 (2006) 認知心理學:理論與實踐。第三版,台北:桂冠。
謝哲仁 (2002) 動態電腦幾何教學建構之設計實例與理論探析。國立嘉義大學數學教育所編,革新國民中小學數學教育議題,225-244。高雄:復文。
謝哲仁 (2001) 動態電腦幾何教學建構之研究。美和技術學院學報, 19, 199-211。
鍾聖校 (1990) 認知心理學。第一版,台北:心理。
英文部分
Anderson, J.R. (1990). Cognitive Psychology and its implication. New York: W. H. Freeman & Company.
Arzarello, F. (2000, July) Inside and outside: Space, times and language in proof production. Proceedings of the 24th conference of the International Group for the Psychology of Mathematics Education (Vol.1, pp.23-38). Hiroshima, Japan.
Arzarello, F., Micheletti, C., Olivero, F., & Robutti, O. (1998, July). Dragging in Cabri and modalities of transformation from conjectures to proofs in geometry. Proceedings of the 22th conference of the International Group for the Psychology of Mathematics Education (Vol.2, pp.24-31). Stellenbosch, South Africa.
Balacheff, N. (1993). Artificial intelligence and real teaching. In C. Keiel & K. Ruthven (Eds.), Learning from Computers: Mathematics Education and Technology (pp. 131-158). Berlin, Springer-Verlag.
Balacheff, N., & Kaput, J. (1996). Computer-based learning environments in mathematics. In A. J. Bishop, K. Clement, J. Keitel, J. Kilpatrick & C.Laborde (Eds.), International handbook of mathematics education (pp. 469-501). Dordrech, The Netherlands Kluwer.
Beyer, B. (1987). Practical Strategies for the Teaching of Thinking. Boston, Allyn and Bacon.
Bishop, A.J. (1989). Review of research on visualization in mathematics education." Focus on Learning Problems in Mathematics, 11(1), 7-16.
Brady, R. (1991). A close look at student problem solving and the teaching of mathematics:predicaments and possibilities. School Science and Mathematics, 91(4), 144-151.
Carlson, M., & Bloom, I. (2005). The cyclic nature of problem solving: An emergent multidimensional problem solving framework.Educational Studies in Mathematics, 58, 45-75.
Carney, N. & Levin, R. (2002). Pictorial illustrations still improve students' learning from text. Educational Psychology Review, 14(1), 5-26.
Cheng, P.C.-H. (1996). Functional roles for the cognitive analysis of diagrams in problem solving. Proceeding of the eighteenth annual conference of the cognitive science society. Hillsdale, NJ, Lawrence Erlbaum Associates.
Chi, M.T.H., Bassock, M., Lewis, R., Reimann, P., & Glaser, R. (1989). Self- explanation: how students study and use examples in learning to solve problems. Cognitive Science, 13, 145-182.
Clement, D.H., & Battista, M.T. (1992). geometry and spatial reasoning. In D.A. Drouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 420-464). Reston,VA: NCTM.
Clement, K. (1982a). Visual imagery and school mathematics (part1). For the Learning of Mathematics, 2(2), 2-39.
Clement, K. (1982b). Visual imagery and school mathematics (concluded). For the Learning of Mathematics, 2(3), 33-39.
De Villers, M. (1994). The role and function of a hierarchical classification of quadrilaterals. For the Learning of Mathematics, 14(1), 11-18.
De Villers, M. (2004). Using dynamic geometry to expand mathematics teachers' understanding of proof. International Journal of Mathematical Education in Science and Technology, 35(5), 703-724.
De Villers, M. (2006). The nine-point conic: a rediscovery and proof by computer. International Journal of Mathematical Education in Science and Technology, 37(1), 7-14.
Dixon, J.K. (1997). Computer use and visualization in students' construction of reflection and rotation concepts. School Science and Mathematics, 97(7), 352-358.
Duval, R. (1995). Geometrical pictures:kinds of representation and specific processing. In R. Sutherland & J. Mason (Eds), Exploiting Mental Imagery with computers in Mathematics Education (pp.127-142). Berlin, Springer.
Duval, R. (1998). Geometry from a cognitive point of view. In C. Mammann and V. Villani (Eds), Perspectives on the teaching of geometry for the 21st century (pp.37-52). Kluwer Academic Publishers.
Duval, R. (2002). Proof understanding in mathematics: what ways for students? Paper presented at the 2002 International Conference on Mathematics: Understanding Proving and Proving to Understand, Taipei..
Dvora, T. & Dreyfus, T. (2004, July). Unjustified assumptions bases on diagrams in geometry. Proceedings of the 28th conference of the International Group for the Psychology of Mathematics Education (Vol.2, pp.311-318), Bergen, Norway.
Fischbein, E. (1987). Intuition in science and mathematics: an educational approach. Dordrecht, Reidel Publishing Company.
Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24, 139-162.
Friel, S.N., Curcio, F.R., & Bright, G.W. (2001). Making sense of graphs:critical factors influencing comprehension and instructional implications. Journal for Research in Mathematics Education, 32(2), 124-158.
Galindo, E. (1997) The development of students' notions of proof in high school classes using dynamic geometry software. Paper presented at the nineteenth annual meeting of the noth American chapter of the international group for the psychology of mathematics education, Columbus, Ohio.
Garofalo, J. & Lester, F.K.(1985). Metacognition, cognitive monitoring, and mathe- matical performance. Journal for Research in Mathematics Education, 3, 163-176.
Geiger, V. & Galbraith, P. (1998). Develop a diagnostic framework for evaluating student approaches to applied mathematical problems. International Journal of Mathematical Education in Science and Technology, 29: 533-559.
Glass, A.L., & Holyoak, K.J. (1986). Cognition. (2nd. ed.) NY, Random House.
Glass, B., & Deckert, W. (2001). Making better use of computer tools in geometry. Mathematics Teacher, 94(3), 224-228.
Goldin, G.A. (1992). Meta-analysis of problem-solving studies: A critical response Journal for Research in Mathematics Education, 23(3), 274-283.
Greeno, J.G. (1980). Some examples of cognitive task analysis with instructional implication. In R.E. Snow, P. Frederico & W.E. Montague (Eds.), Aptitude, learning and instruction (Vol. 2, pp.1-21). Hillsdale, NJ, Lawrence Erlbaum Associates.
Hadas, N., Hershkowitz, R., & Schwarz, B.B. (2000). The role of contradiction and uncertainty in promoting the need to prove in dynamic geometry environment. Educational Studies in Mathematics, 44, 127-150.
Halmos, P. (1980). The heart of mathematics. Mathematical Monthly, 87, 519-524.
Hanna, G. (2000). Proof, explanation and exploration: an overview. Educational Studies in Mathematics, 44, 5-23.
Hayes, J.R. (1981). The complete problem solver. The Franklin Institute Press.
Healy, L. & Hoyles, C. (2001). Software tools for geometrical problem solving: potential and pitfalls. International Journal of Computers for Mathematical Learning, 6(3): 235-256.
Hembree, R. (1992). Experiments and relational studies in problem solving:A meta- analysis. Journal for Research in Mathematics Education, 23(3), 242-273.
Hershkowitz, R. (1998). Reasoning in geometry. In C. Mammann and V. Villani (Eds), Perspectives on the teaching of geometry for the 21st century (pp.29-37). Kluwer Academic Publishers.
Hershkowitz, R., Ben-Chaim, D., Hoyles, C., Lappan, G., Mitchelmore, M., & Vinner, S. (1990). Psychological aspects of learning geometry. In P. Nesher & J. Kilpatrick (Eds.), Mathematics and Cognition: A research synthesis by the international group for psychology of mathematics education (pp.70-95).Cambridge, Cambridge University Press.
Hoffer, A. (1981). Geometry is more than proof. Mathematics Teacher , 74, 11-18.
Holzl, R. (2001). Using dynamic geometry software to add contrast to geometric situation: a case study. International Journal of Computers for Mathematical Learning, 6(1), 63-86.
Hoz, R. (1981). The effects of rigidity on school geometry learning. Educational Studies in Mathematics ,12, 171-190.
Jurdak, M. (2000, July) Technology and problem solving in mathematics: myths and reality. Proceedings of International Conference on technology in Mathematics Education (pp.30-37). Beirut, Lebanon.
Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren. Chicago, IL, University of Chicago Press.
Laborde, C. (2000). Dynamic geometry environments as a source of rich learning contexts for the complex activity of proving. Educational Studies in Mathematics, 44, 151-161.
Laborde, C. (2001). Intergation of texhnology in the design of geometry tasks with Cabri-Geometry. International Journal of Computers for Mathematical Learning, 6(3), 283-317.
Lakatos, I. (1976). Proofs and refutation: the logic of mathematical discovery. New York, NY, Cambridge University Press.
Lange, G.V. (2002). An experience with interactive geometry software and conjecture writing. The Mathematics Teache , 95(5), 336-337.
Larkin, J.H. & Simon, H.A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65-99.
Lawson, M. & Chinnappan, M. (1994). Generative activity during geometry problem solving: comparison of the performance of high-achieving and low-achieving students' Cognition and Instruction, 12(1), 61-93.
Lawson, M. & Chinnappan, M (2000). Knowledge connectedness in geometry problem solving. Journal for Research in Mathematics Education, 31(1), 26-43.
Lesh, R., Behr, M., & Post, T. (1987). Representations and translations among representations in mathematical learning and problem solving. In C. Janvier (Ed.), Problems of representations in the teaching and learning of mathematics (pp. 41-58). Hillsdale, NJ, Lawrence Erlbaum Associates.
Lester, F.K. (1994). Musings about mathematical problem-solving research:1970-1994 Journal for Research in Mathematics Education, 25(6), 660-675.
Leung, A. (2003, July). Dynamic geometry and the theory of variation. Proceedings of the 27th conference of the International Group for the Psychology of Mathematics Education (Vol.3, pp.197-204). Honolulu, USA.
Lopez-Real, F., & Leung, A. (2006). Dragging as a conceptual tool in dynamic geometry environments. International Journal of Mathematical Education in Science and Technology, 37(6), 665-679.
Lowe, R.K. (1994). Selectivity in diagrams: reading beyond the lines. Educational Psychology, 14(4), 467-491.
Mariotti, M.A. (2000). Introduction to proof`: the mediation of a dynamic software environment. Educational Studies in Mathematics, 44, 25-53.
Mariotti, M.A. (2001). Justifying and proving in the Cabri environment. International Journal of Computers for Mathematical Learning, 6, 257-281.
Markovits, H. (1986). The curious effect of using drawings in conditional reasoning problems. Educational Studies in Mathematics, 17, 81-87.
Marrades, R. & Gutierrez, A. (2000). Proofs produced by secondary school students learning geometry in dynamic computer environment. Educational Studies in Mathematics, 44, 87-125.
Mason, J., Burton, L., & Stacey, K. (1982). Thinking Mathematically. London, Addison Wesley.
Mayer, R.E. (1992). Thinking, problem solving, and cognition. New York, W.H. Freeman & Company.
McLeod, D.B. (1988). Affective issues in mathematical problem solving: some theo- retical considerations. Journal for Research in Mathematics Education, 19, 134- 141.
McLeod, D.B. (1992). Research on affect in mathematics education: a reconceptual- ization. In D. A. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp.575-596). Reston, VA: NCTM.
Moore, D.M. & Dwyer, F.M. (1994). Visual literacy:a spectrum of visual learning. New Jersey, Educational Technology Publications, Inc., Eaglewood Cliffs.
NCTM (1985). The secondary school mathematics curriculum. Reston, VA, Author.
NCTM (1989). Curriculum and evaluation standards for teaching mathematics Reston, VA, Author.
Nickerson, R., Perkin, D., & Smith, E. (1985). The Teaching of Thinking. Hillsdale, NJ: Lawrance Erlbaum Association.
Nunes, T., Schlieman, A.D., & Carraher, D.W. (1993) Street mathematics and School mathematics. Cambridge, MA, Cambridge University Press.
Nunokawa, K. (1994). Improving diagrams gradually: one approach to using diagrams in problem solving. For the Learning of Mathematics, 14(1), 34-37.
Nunokawa, K. (1997). Giving new senses to the existing elements: a characteristics of the solution accompanied by global restructuring. Journal of Mathematical Behavior, 16(4), 365-378.
Nunokawa, K. (2004). Solves' making of drawings in mathematical problem solving and their understanding of the problem situations. International Journal of Mathe- matical Education in Science and Technology, 35(2), 173-183.
Nunokawa, K. (2005). Mathematical problem solving and learning mathematics: what we expect students to obtain. Journal of Mathematical Behavior, 24(4), 325-340.
Nunokawa, K., & Fukuzawa, T. (2002). Questions during problem solving with dynamic geometric software and understanding problem situations. Proceedings of the National Science Council, Republic of China, Part D: Mathematics, Science and Techonolgy Education , 12(1), 31-43.
Owens, K., Perry, B., Conroy, J., Geoghegan, N., & Howe, P. (1998). Responsiveness and affective processes in the interactive construction of understanding in mathematics. Educational Studies in Mathematics, 35, 105-127.
Pandiscio, E.A. (2002). Exploring the link between preservice teachers' conception of proof and the use of dynamic geometry software. School Science and Mathematics, 102(5), 216-221.
Parzysz, B. (1991). Representation of space and students' conception at high school level. Educational Studies in Mathematics, 22, 575-593.
Polya, G. (1957). How to solve it. New York, NY, Doubleday Anchor Books.
Polya, G. (1962). Mathematical Discovery: on Understanding, Learning, and Teaching Problem Solving. John Wiley & Sons Inc.,.
Prawat, R. (1989). Promoting access to knowledge, strategy and disposition in students. Review of Educational Research, 59, 1-42.
Presmeg, N.C. (1986). Visualization in high-school mathematics. For the Learning of Mathematics , 6, 42-46.
Presmeg, N.C. (1992). Prototypes, metaphors, metonymies and imaginative rationality in high school mathematics. Educational Studies in Mathematics, 23 , 595-610.
Resnick, L.B., & Ford, W.W. (1981). The psychology of mathematics for instruction. Hillsdale, NJ, Lawrence Erlbaum Associates.
Roth, W.M., & Bowen, G.M. (2003). When are graphs worth ten thousand words? an expert-expert study Cognition and Instruction, 21(4), 429-473.
Santos-Trigo, M., & Espinosa-Perez, H. (2002). Searching and exploring properties of geometric configurations using dynamic software. International Journal of Mathe- matical Education in Science and Technology, 33(1), 37-50.
Schoenfeld, A.H. (1979). Explicit heuristic training as a variable in problem-solving performance. Journal for Research in Mathematics Education, 10(2), 173-187.
Schoenfeld, A.H. (1980).Teaching problem-solving skills. The American Mathematical Monthly, 87(10), 794-805.
Schoenfeld, A.H. (1983). The wild, wild, wild, wild, wild world of problem solving: a review of sorts. For the Learning of Mathematics, 3, 40-47.
Schoenfeld, A.H. (1985). Mathematical problem solving. New York: Academic Press.
Schoenfeld, A.H. (1986). On having and using geometrical knowledge. In J. Hiebert (Ed), Conceptual and procedural knowledge: the case of mathematics (pp.225-263). Hillsdale, NJ, Lawrence Erlbaum Associates.
Schoenfeld, A.H. (1992). Learning to think mathematically:problem solving, meta- cognition, and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp.334-370). Reston, VA: NCTM.
Sedig, K. & Sumner, M.(2006) Characterizing interaction with visual mathematical relation. International Journal of Computers for Mathematical Learning, 11(1), 1-55.
Senk, S.L. (1985). "How well do students write geometry proofs?" Mathematics Teacher , 78(6), 448-456.
Shah, P., &. Hoeffner, J. (2002). Review of graph comprehension research: implication for instruction. Educational Psychology Review, 14(1), 47-69.
Silver, E.A. (1987) Foundations of cognitive theory and research for mathematics problem solving. In A. Schoenfeld (Ed.), Cognitive science and mathematics education (pp.33-60). Hillsdale, NJ, Lawrence Erlbaum Associates.
Simon, H.A., & Kaplan, C.A. (1989) Foundations of cognitive science. In M.I. Posner (Ed.), Foundations of cognitive science (pp.1-48). London, England, MIT Press.
Skemp, R. (1987). Psychology of learning mathematics. Hillsdale, NJ, Lawrence Erlbaum Associates.
Stacy, K. (2005). The place of problem solving in contemporary mathematics curriculum documents. Journal of Mathematical Behavior, 24, 341-350.
Tabachneck-Schijf, H. J. M., & Simon. H. A. (1996). Alternative representations of instructional material. In D. Peterson (Ed.), Forms of representation. Exeter intellect Book Ltd. .
Taplin, M. (1995) An Exploration of persevering students' management of problem solving strategies. Focus on Learning problems in mathematics, 17(1), 49-61.
Vinner, S. (1991) The role of definition in the teaching and learning of mathematics. In D. Tall (Ed) Advanced mathematical thinking (pp.65-81). Kluwer Academic Publishers
van Hiele, P.M. (1986). Structure and insight: a theory of mathematics education. Orlando, FL: Academic Press.
Wilson, J., & Clarke D. (2002, April). Monitoring Mathematical Matacognition. Paper presented at the American Education Research Association Conference, New Orleans.
Weber, K. (2001) Students difficulty in constructing proofs: the need for strategic knowledge. Educational Studies in Mathematics, 48, 101-119
Wu, H. (1996). The mathematician and mathematics education reform. Notices of the American Mathematical Society, 43(12), 1531-1537.
Yerushalmy, M. & Chazan, D. (1990). Overcoming visual obstacles with the aid of the Supposer. Educational Studies in Mathematics, 21, 199-219.
Zambo, R., & Follman, J. (1994). Gender-related differences in problem solving at the 6th and the 8th grade levels. Focus on Learning Problems in Mathematics, 16(2), 21-38.
Zaslavsky, O. (2005). Seizing the opportunity to create uncertainty in learning mathematics. Educational Studies in Mathematics, 60, 297-321.
Zazkis, R., Dubinsky, E., & Dautermann, J. (1996). Coordinating visual and analytic strategies: a study of students' understanding of the group D4. Journal for Research in Mathematics Education, 27(4), 435-457.