研究生: |
楊純珠 Yang, Chun-Chu |
---|---|
論文名稱: |
「溶液」多媒體CAL之概念學習研究 Using the multimedia CAL program to promote the "Solution" Conception Learing |
指導教授: |
楊永華
Yang, Yong-Hwa |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
畢業學年度: | 87 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 溶液 、多媒體電腦輔助學習 、粒子模型 |
英文關鍵詞: | solution, multimedia computer-assisted learing, particle midel |
論文種類: | 學術論文 |
相關次數: | 點閱:217 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究選擇86、87學年度國中理化課本(一)~(三)中溶液之相關內容(溶液本質、溶解過程及溶解平衡),進行概念分析,並蒐集文獻探討學生常見的迷思概念,作為多媒體CAL系統設計時之參考;並整合概念改變模式、粒子模型,及動畫、影片之運用,發展出「溶液」多媒體CAL系統。
為驗證所發展的CAL系統在協助學生學習「溶液」概念上的功效,以臺北縣某中學的40名國三學生為樣本,於寒假期間進行前測、上機及後測,並施以問卷調查瞭解學生對該軟體的看法,最後選擇10名研究對象進行晤談。
研究結果顯示,學生在上機之後,後測成績有顯著進步(t=9.47,p<.01),而且多數「溶液」的迷思概念也顯著改善,少數迷思概念則顯示出無法透過短暫的教學輕易地被改變。另外,問卷結果顯示,學生對本多媒體CAL系統在「溶液」概念學習上的幫助給予正面的肯定,但也建議須在畫面、動畫的精緻度及測驗數量上作改進。
In view of the fact that many high school students have trouble in making clear the concept "solution", the researcher collects a lot of related materials trying to develop a computer-assisted learning program, which aims to help students get rid of some misconceptions. The research is based on the official high school science textbooks (the academic year 86-87, volume 1-3). And from them some solution-related contents like "the essence of solution", "the process of dissolving", and "dissolve equilibrium" are extracted. On the basis of those contents, combining "concept change model" and "particle model", exerting animation as well as motion pictures, a computer-assisted learning program, especially designed for the introduction of "solution", comes into being.
In order to test the program's effectiveness, the researcher invited 40 high school seniors from Taipei County during winter break as examples, who in turn underwent the pre-test, on-line instruction, and post-test. After they were questioned their opinions about the software, the researcher chose from them ten and had an interview with them individually.
As the result shows, students make astonishing progress in the post-test after receiving on-line instruction (t=9.47, p<.01); what is more, most misconceptions are successfully removed. Some seem unlikely to get rid of through a few hour' instruction. In addition, the questionnaires reveal that students respond positively to the program and consider it a great aid in understanding the concept of "solution.". However they suggest more efforts should be made in the increase of question items and in the perfection of animation and motion pictures.
上奇科技(民86):3D Studio Max--易學易用專輯。台北市:碁峰資訊股份有限公司。
上奇科技(民86):深入3D Studio Max。台北市:碁峰資訊股份有限公司。
王鼎銘(民86):動畫影像科技在教育上之應用及未來發展。資訊與教育雜誌,57,24-28。
沈中偉(民84):多媒體電腦輔助學習的學習理論基礎研究。視聽教育雙月刊,36(6),12-25。
邱貴發(民85):情境學習理念與電腦輔助學習---學習社群理念探討。台北市:師大書苑。
吳明清(民80):教育研究:教育觀念與方法分析。台北市:五南圖書出版有限公司。
周惠文(民84):電腦概論--多媒體電腦輔助教學系統開發與評估。視聽教育雙月刊,37(3),7-17。
洪振方(民76):學生空氣體積及壓力之粒子模型概念與推理能力。台北市:國立臺灣師範大學碩士論文。
計惠卿(民84):漫談多媒體與超媒體CAI。載於教育部電子計算機中心發行:CAI課程軟體編製技術參考手冊。台北市:教育部電子計算機中心。
洪榮昭、劉明洲(民86):電腦輔助教學之設計原理與應用。台北市:師大書苑。
陳明溥(民87):創新推廣理論與資訊教育推展。臺灣教育,572,2-10。
郭重吉(民77):從認知觀點探討自然科學的學習。國立臺灣師範學院院報,13,351-379。
國立編譯館(民86):國民中學理化(一)。台北市:國立編譯館。
國立編譯館(民86):國民中學理化(二)。台北市:國立編譯館。
國立編譯館(民86):國民中學理化(三)。台北市:國立編譯館。
黃世陽、吳明哲、何嘉益、張志成和吳志中(民86):VB5.0中文版學習範本。台北市:松崗電腦圖書資料股份有限公司。
楊永華、王澄霞(民73):中小學化學領域中的「溶液」主題單元概念的深廣度與其化學實驗活動之連貫性與適用性之研究。科學教育月刊,75,12-31。
楊煥謀(民87):國中理化科多媒體電腦輔助教學軟體製作之研究。台北市:國立臺灣師範大學碩士論文。
劉元生(民83):實驗教學對於國中學生溶液概念改變的影響。台北市:國立臺灣師範大學碩士論文。
蔡玟錦(民80):發展紙筆測驗以探究高三學生對化學平衡的迷思概念。彰化市:國立彰化師範大學碩士論文。
盧文顯(民81):從粒子模型概念探究學生對於溶液概念之思考模式。台北市:國立臺灣師範大學碩士論文。
謝祥宏、湯清二(民83):利用交互式多媒體教學(IMI)系統學習細胞生理之研究。國科會專題研究計劃成果報告。彰化市:國立彰化師範大學。
Abraham, M. R., Grzybowski, E. B., Renner, J. W., & Mark, E. A. (1992). Understandings and misunderstandings of eighth graders if five chemistry concepts found in textbooks. Journal of Research in Science Teaching, 29(2),105-120.
Airasian, P. W., & Walsh, M. E. (1997). Constructivist cautions. Phi Delta Kappan, 78, 444-449.
Albanese, A., & Vicentini, M. (1997). Why do we believe that an atom is colourless? Reflections about the teaching of the paticle model. Science and Eduction, 6, 251-261.
Appleton, A. (1997). Analysis and description of students' learning during science classes using a constructivist-based model. Journal of research in science teaching, 34(3), 303-318.
Black, M. (1962). Models and metaphors. Ithaca. NY: Cornell University Press.
Blanco, A., & Prieto, T. (1997). Pupils' views on how stirring and temperature affect the dissolution of a solid in a liquid﹕a cross-age study (12 to 18). International Journal of Science Education, 19(3), 303-315.
Boo, H. K. (1998). Students' understandings of chemical bonds and the energetics of chemical reactions. Journal of Research in Science Teaching, 35, 569-581.
Borges, A. T., & Tecnico, C. (1999). Metal model of Electricity. International Journal of Science Education, 21(1), 95-117.
Brook, A., Briggs, H., & Driver, R. (1984). Aspects of secondary students' understanding of particular nature of matter. Children's learning in science project. Centre for Studeis in Science and Mathematics Educations. The University of Leeds.
Clement, J. J. (1977). Some types of knowledge used in understanding physics. University of Massachusetts, Department of Physics and Astronomy (mimeographed).
de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68(22), 179-201.
de Posada, J. M. (1997). Conception of high school students concerning the internal structure of metals and their electric conduction: structure and evolution. Science Education, 81, 445-467.
Driver, R. (1981). Pupils' alternative frameworks in science. European Journal of Science Education, 3(1), 93-101.
Driver, R. (1985). Beyond appearances: the conservation of matter under physical and chemical transformation. In R. Driver (Ed.), Childrens' ides in Science (Open University Press, Milton Keynes).
Franco, C., de Barro, H. L., Colinvaux, D., Krapas, S., Queiroz, G., & Alves, F. (1999). From scientists' and inventors' minds to some scientific and technological products: relationships between theories, models, mental models and conceptions. International Journal of Science Education, 21(3), 277-291.
Gabel, D. L., & Samuel, K. V. (1986). High school students' ability to solve molarity problems and their analog counterparts. Journal of Research in Science Teaching, 32(2), 165-176.
Gilbert, J. K. (ED) (1993). Models and modelling in science education. Hatfield. UK: Asscoiation for Science Education.
Gilbert, J. K., Osborne, R. J., & Fensham, P. J. (1982). Children's science and its consequences for teaching. Science Education, 66(4), 623-633.
Glynn, S. M. (1991). Explaining science concepts: A teaching-with-analogies model. In S. Glynn, R. Yeany, & B. Britton (Eds.), The Psychology of learning science.
Hameed, H., Hackling, M. W., & Garnett, P. J. (1993). Facilitating conceptual change in chemical equilibrium using a CAI strategy. International Journal of Science Education, 15(2), 221-230.
Harrison, A. G., & Treagust, D. F. (1996). Secondary students' mental models of atoms and molecules: implications for teaching chemistry. Science Education, 80(5), 509-534.
Harrison, A. G., & Treagust, D. F. (1995). Students' preferred models of atomic and molecular structure. Paper presented at the annual meeting of the American Educational Research Association, San Francisco, CA.
Henriques, L. (1997). A study to define and verify a model of interactive constructive elementary school science teaching. Unpublished Ph. D. Dissertation, University of Iowa, Iowa City.
Hestenes, D.(1992). Modeling games in the Newtonian world. American Journal of Physics, 60, 732-746.
Johnson, P. (1998). Progression in children's understanding of a 'basic' particle theory: a longitudinal study. International Journal of Science Education, 20(4), 393-412.
Kokkotas, P., & Vlachos, I. (1998). Teaching the topic of the particulate nature of matter in prospective teachers' training course. International Journal of science education, 20(3), 291-303.
Lee, O., Eichinger, D. C., Anderson, C. W., Berkheimer, G. D., & Blakeslee, T. D. (1993). Change middle school students' conceptions of matter and molecules. Journal of Research in Science Teaching. 30, 249-270.
Linke, R. D., & Venz, M. I. (1978). Misconceptions in physical science among non-science background students. Research in Science Education, 8, 183-193.
Longden, K., Black, P., & Solonomon, J. (1991). Children's interpretation of dissolving. Internationl Journal of Science Education, 13(1), 59-68.
Nakhleh, M. B. (1982). Why some students don't learn chemistry: Chemical misconceptions. Journal of Chemical Education, 69, 191-196.
Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L. Stevens (Eds.). Mental models(pp. 7-14). Hillsdale, NJ: Erlbaum.
Novak, J. D. (1988). Learning science and the science of learning. Studies in Science Education, 15, 77-101.
Novak, J. D. (1977). An alternative to Piagetian Psychology for science and mathematics education. Science Education, 61(4),453-477.
Novick, S., & Nussbaum, J. (1978). Junior high school pupils' understanding of the particulate nature of matter: An interview study. Science Education, 63, 273-281.
Novik, S., & Nussbaum, J. (1981). Pupils' understanding of the particulate nature of matter: A cross age study. Science Education, 65(2),187-196.
Posner, G. J., & Gertzog, W. A. (1982). The clinical interview and the measurement of conceptual change. Science Education, 66, 195-209.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1980). Accommodation of a scientific conception: toward a theory of conceptual change. Science Education, 66(2), 211-227.
Prieto, T., Blanco, A., & Rodriguez, A. (1989). The ideas of 11 to 14- year-old students about the nature of solution. International Journal of Science Education, 11(4), 165-176.
Reif, F. (1987). Instructional design, cognition and technology: applications to the teaching of scientific concepts. Journal of Research in Science Teaching, 24, 309-324.
Roth, W. M. (1992). The particulate theory of matter for preservice elementary teachers. Journal of Science Teacher Education, 3(4), 115-122.
Sheperd, D. L., & Renner, J. W. (1981). Student understandings and misunderstandings of states of matter and density changes. School Science and Mathematics, 82, 650-665.
Slone, M., & Bolhurst, F. D. (1992). Children's understanding of sugar water solutions. International Journal of Science Education, 14(2), 221-235.
Stavridou, H., & Solomonidou, C. (1989). Physical phenomena-chemical phenomena: do pupils make the distinction? International Journal of Science Education, (1), 83-92.
Stavy, R., & Berkowitz, B. (1980). Cognitive conflict as a basis for teaching quantitative aspects of the concept of temperature. Science Education, 64, 679-692.
Sutton, C. & West, L. (1982). Investigating children's existing ideas about science. ERIC Document, No. ED 230424.
Vicentini, M. & Wanderlingh, F. (1994). Generalized rates of change and the role of empirical laws in physics, submitted to Didaskalia.
Vicentini, M. (1994). Thinking of physics for teaching. Proceedings of the Summer School on Research in Science Education, Tessaloniki.
von Glaserfeld, E. (1989). Conginition, construction of knowledge, and teaching. Synthese, 80, 121-140.
Vosniadou, S. (1994). Capturing and modelling the process of conceptual change. Learning and Instruction, 4, 45-69.
Windschitl, M., & Andre, T. (1998). Using Computer Simulations to Enhance Conception Change: The Roles of Constructivist Instruction and Student Epistemological Beliefs. Journal of Research in Science Teaching. 35(2), 140-160.
Zietsman, A. I., & Hewson, P. W. (1986). Effect of instruction using microcomputer simulations and conceptual strategies on sciece learing. Journal of Research in Science Teaching, 23(1), 27-39.