簡易檢索 / 詳目顯示

研究生: 陳韋翰
Chen, Wei-Han
論文名稱: 使用吸濕速乾纖維散熱以提升R-410A分離式冷氣機性能研究
Use moisture wicking fiber evapotranspiration to enhance performance of R-410A split air conditioner
指導教授: 莫懷恩
Mo, Huai-En
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 58
中文關鍵詞: R-410A分離式冷氣機吸濕速乾纖維性能係數(COP)能源效率比(EER)
英文關鍵詞: R410A split air conditioners, Moisture transferring and quick drying textiles (MTQDT), Coefficient of performance (COP), Energy efficiency ratio (EER)
DOI URL: https://doi.org/10.6345/NTNU202202868
論文種類: 學術論文
相關次數: 點閱:234下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在利用吸濕速乾纖維,藉以提昇R-410A分離式冷氣機的性能,其主要方法為運用吸濕速乾纖維的蒸發冷卻效果,以降低壓縮機溫度並達成研究目的。實驗以相同室內條件與不同外氣條件溫度(30±1°C 、35±1°C及40±1°C)進行性能測試,結果顯示,吸濕速乾纖維能成功運用於R-410A分離式冷氣機。在30、35與40°C環境溫度下,它能降低壓縮機出口溫度7.5%、7.4及6.2%,提昇系統性能係數(COP)20.68%、18.3%及17.69%,以及增加能源效率比(EER)4.39%、6.42%及4.87%。

    This study aimed to enhance the performance of R-410A split air conditioner by using moisture transferring and quick drying textiles (MTQDT). The main method is decreased compressor temperature through evaporative cooling effect of the MTQDT and achieved the purpose of this study. We went on performance measurement using the same indoor load and the different ambient temperature (30±1°C, 35±1°C and 40±1°C). The results show that the MTQDT can successfully apply in a R410A split air conditioner. In the ambient temperature of 30°C, 35°C and 40°C, it prove that the compressor outlet temperature is reduced by 7.5%, 7.4% and 6.2%, the COP is improved by 20.68, 18.3% and 17.69%, and the EER is raised by 4.39%, 6.42% and 4.87%.

    目 次 摘要 i Abstract ii 目次 iii 表次 v 圖次 vi 第一章 前言 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.2.1 吸濕速乾纖維 2 1.2.2 蒸氣壓縮冷凍系統之性能分析 3 1.3 研究假設 4 1.4 研究目的 4 1.5 研究方法 5 1.6 論文架構 6 第二章 理論基礎 7 2.1 國家標準CNS規範 7 2.2 理想蒸氣壓縮冷凍循環系統 7 2.3 實際蒸氣壓縮冷凍循環系統 9 2.4 熱力學第一定律分析 11 第三章 實驗設計 13 3.1 實驗系統說明 14 3.2 實驗設備 17 3.3 量測儀器 22 3.4 環境控制 27 3.5 實驗流程 29 3.5.1. 實驗流程 29 3.6 實驗步驟與量測方法 31 3.6.1 原機性能實驗 31 3.6.2 新型機性能實驗一 32 3.6.3 量測方法 33 3.6.4 噪音量測 34 3.7 數據處理 35 3.8 誤差分析 36 第四章 結果與討論 37 4.1 系統壓力之比較 37 4.2 壓縮機外殼溫與吐出口溫度之比較 40 4.3 性能係數COP之比較 43 4.4 能源效率EER之比較 46 4.5 壓縮機噪音之比較 49 第五章 結論及建議 51 5.1 結論 51 5.2 建議 52 參考文獻 53 符號彙編 57 作者簡介 58

    參考文獻
    [1] G. Lopez, Y. Kawahar, Y. Suzuki, M. Takahashi, M. Wada, “Effect of direct neck cooling on psychological and physiological state in summer heat environment,” Mechanical Engineering Journal., 3(1), 2016.
    [2] Z. T. Ai, C. M. Mak, D. J. Cui, P. Xue, “Ventilation of air-conditioned residential buildings: A case study in Hong Kong,” Energy and Buildings, vol.127, pp.116-127,2016.
    [3] JRAIA, World air conditioner demand by region. The Japan Refrigeration and Air Conditioning Industry Association, 2016. < https://www.jraia.or.jp /english/World_AC_Demand.pdf >
    [4] L. W. Davis, Lucas W., and P. J. Gertler, “Contribution of air conditioning adoption to future energy use under global warming,” Proceedings of the National Academy of Sciences ,vol.112(19), 5962-5967, 2015.
    [5] 余培煜、粘世和、黃致愷,R410A分離式空調機開發技術研究,冷凍空調與能源科技雜誌,vol.68,31-40,2011。
    [6] F. Wang, D.Y. Li, Y. Zhou,“Theoretical research on the performance of the transcritical ejector refrigeration cycle with various refrigerants,” Applied Thermal Engineering, vol. 91, no. 5, pp. 363-369, Dec. 2015.
    [7] L. Sun, W. Han, H. Jin,“Energy and exergy investigation of a hybrid refrigeration system activated by mid/low-temperature heat source,” Applied Thermal Engineering, vol. 91, no. 5, pp. 913-923, Dec. 2015.
    [8] G. Yan, J. Chen, J. Yu,“Energy and exergy analysis of a new ejector enhanced auto-cascade refrigeration cycle,” Applied Thermal Engineering, vol. 105, no. 15, pp. 509-517, Nov. 2015.
    [9] M. H. Yang, R. H. Yeh,“Performance and exergy destruction analyses of optimal subcooling for vapor-compression refrigeration systems,” International Journal of Heat and Mass Transfer, vol. 87, pp. 1-10, Aug. 2015.
    [10] 章以慶、李貴琪、游輝仁、繆梅芬,“兩種吸濕排汗合成纖維與純棉纖維織物之人體動靜態舒適性研究”,實踐設計學報,第72-89頁,第5期,2011年10月。
    [11] 李銘軒、李貴琪、張偉瑤、周勝賢,“不同吸濕排汗織物舒適性之比較”,華岡紡織期刊,第23-37頁,第16卷,第1期,2009年3月。
    [12] 中華民國紡織業拓展會,“機能性紡織品競爭力與市場發展分析”,第1-2頁,2007年4月。
    [13] 工業總會服務網,“機能性紡品 再創人纖業光芒”。取自http://www.cnfi.org.tw/kmportal/front/bin/ptdetail.phtml?Part=magazine9604-445-10.
    [14] 蘇宣輔、劉于詮,“不同布料吸濕排汗特性比較之實作”,華人運動生物力學期刊,第226-228頁,第7期,2012年10月。
    [15] 劉于詮、林憲章、蘇宣輔、李伯倫、林宏偉,“市面常見排汗衫布料之吸濕排汗特性比較”,屏東教大體育,第259-268頁,第17期,2014年6月。
    [16] 葉承翰,“應用吸濕速乾纖維提升R410A窗型空調機性能研究”,國立臺灣師範大學,碩士論文,2014年7月。
    [17] 沈嘉勇,“R410A窗型冷氣機節能之研究”,國立臺灣師範大學,碩士論文,2015年1月。
    [18] u, C. Rousseau, L. Lamarche, and S. Kajl, “A comparative performance study of a direct expansion geothermal evaporator using R410A and R407C as refrigerant alternatives to R22,” Applied Thermal Engineering., vol. 82, no. 5, pp. 306-317, May. 2015.
    [19] M. H. Yang, R. H. Yeh, “Performance and exergy destruction analyses of optimal subcooling for vapor-compression refrigeration systems,” International Journal of Heat and Mass Transfer., vol. 87, Aug. 2015.
    [20] R. Saidur, H. H. Masjuki, and M. Y. Jamaluddin. "An application of energy and exergy analysis in residential sector of Malaysia." Energy Policy 35.2, p1050-1063,2007.
    [21] Yumrutaş, Recep, Mehmet Kunduz, and Mehmet Kanoğlu. "Exergy analysis of vapor compression refrigeration systems." Exergy, an International Journal 2.4, p266-272,2002.
    [22] O. E. Ataer, Gogus, Yalcin., Comparative study of irreversibilities in an
    aqua-ammonia absorption refrigeration system, International Journal of
    Refrigeration, Vol.14, p86-92,1991.
    [23] C. E. Vincent, M. K. Heun. Thermo economic analysis & design of domestic refrigeration systems. Domestic use of energy conference. 2006.
    [24] S. Kalaiselvam, R. Saravanan. Exergy analysis of scroll compressors working with R22, R407 and R717 as refrigerant for HVAC system. Thermal Science 13, p175-184,2009.
    [25] J. U. Ahamed, R. Saidur, and H. H. Masjuki. "A review on exergy analysis of vapor compression refrigeration system." Renewable and Sustainable Energy Reviews 15.3 (2011): p1593-1600.
    [26] S. Anand, and S. K. Tyagi. "Exergy analysis and experimental study of a vapor compression refrigeration cycle." Journal of thermal analysis and calorimetry 110.2 ,p961-971,2012.
    [27] V. M. V. Padmanabhan, and S. K. Palanisamy. "Exergy efficiency and irreversibility comparison of R22, R134a, R290 and R407C to replace R22 in an air conditioning system." Journal of Mechanical Science and Technology 27.3, p917-926,2013.
    [28] J. L. C. Fannou, C. Rousseau, L. Lamarche, and S. Kajl, “A comparative performance study of a direct expansion geothermal evaporator using R410A and R407C as refrigerant alternatives to R22,” Applied Thermal Engineering., vol. 82, no. 5, pp. 306-317, May. 2015.
    [29] M. H. Yang, R. H. Yeh, “Performance and exergy destruction analyses of optimal subcooling for vapor-compression refrigeration systems,” International Journal of Heat and Mass Transfer., vol. 87, pp. 1-10, Aug. 2015.
    [30] G. Yan, J. Chen, J. Yu, “Energy and exergy analysis of a new ejector enhanced auto-cascade refrigeration cycle,” Applied Thermal Engineering., vol. 105, no. 15, pp. 509-517, Nov. 2015.
    [31] F. Wang, D.Y. Li, Y. Zhou, “Theoretical research on the performance of the transcritical ejector refrigeration cycle with various refrigerants,” Applied Thermal Engineering., vol. 91, no. 5, pp. 363-369, Dec. 2015.
    [32] L. Sun, W. Han, H. Jin, “Energy and exergy investigation of a hybrid refrigeration system activated by mid/low-temperature heat source,” Applied Thermal Engineering., vol. 91, no. 5, pp. 913-923, Dec. 2015.

    無法下載圖示 本全文未授權公開
    QR CODE