研究生: |
謝富貴 |
---|---|
論文名稱: |
新日本靈芝、環紋靈芝純培養菌絲體之生理性狀及核醣體DNA定序之研究 Cultural, Physiolocal and Ribosomal DNASequencing Studies ofGanoderma neojaponicumand G. zonatum |
指導教授: | 葉增勇 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2002 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 靈芝 、新日本靈芝 、環紋靈芝 、純培養菌絲體 、核醣體DNA |
英文關鍵詞: | G. neojaponicum, G. zonatum, Ribosomal DNASequencing, pure cultures |
論文種類: | 學術論文 |
相關次數: | 點閱:240 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
新日本靈芝(G. neojaponicum)為分佈於台灣、大陸及日本,寄主為針葉樹及竹類等,環紋靈芝(G. zonatum)為產於美國佛羅里達州和喬治亞洲,其所寄生之宿主侷限於椰子類(palms) 之樹木。本研究以台灣新日本靈芝及美國環紋靈芝為菌種,純培養其菌絲體以探討兩個地區的靈芝,其菌絲體的生理特性,並利用聚合酶連鎖反應法得到核醣體DNA之內轉錄區(ITSⅠ&ITSⅡ),將其核酸序列進行分析比較其相似性,以提供台灣新日本靈芝及美國環紋靈芝生物多樣性之進一步資訊。
新日本靈芝及環紋靈芝的純培養性狀中,兩者菌褥(mycelial mat)正面皆為白色,背面呈現褐色,生殖菌絲(generative hyphae)皆具有扣子體(clamp connection)及出現腫大的細胞(swelling cell),皆能分泌細胞外氧化酵素,包括漆氧化酵素(laccase)及過氧化酵素(peroxidase),而兩者皆不能分泌酪胺酸酵素(tyrosinase),屬於木材白腐菌(white rotting fungus),能利用木材之木質素(lignin)、亞纖維素(hemicellulose)與纖維素(cellulose)。
新日本靈芝在麥芽抽出物培養基MEA及馬鈴薯葡萄糖培養基PDA的最適生長溫度範圍皆為24~28℃,環紋靈芝在MEA及PDA培養基的最適生長溫度範圍為32℃,兩者在溫度16℃、36℃時,無論是以MEA培養基或PDA培養基培養時,生長速率皆明顯較差。酸鹼度在pH 2.4~6.1範圍內對新日本靈芝的生長趨勢無太大影響,而環紋靈芝在pH 4.6時生長狀況最好。新日本靈芝對葡萄糖濃度的基本需求約40g/L,但葡萄糖濃度超過80g/L時,新日本靈芝的菌絲乾重並不隨供給的碳源增加,葡萄糖濃度在40~80g/L時對環紋靈芝的生長最佳。新日本靈芝與環紋靈芝的菌絲體以澱粉培養的生長表現優於以葡萄糖或蔗糖培養。新日本靈芝對無機氮的濃度需求不高,低無機氮源濃度(0.02N)時生長狀況較佳,對有機氮源的濃度需求為0.04~0.08N,有機氮源濃度超過0.4N時,則會抑制菌絲的生長。環紋靈芝在低無機氮源濃度(0.04N)時菌絲生長最佳,無機氮源濃度超過0.08N時,對菌絲的則生長有不良的影響,而對有機氮源反應則為濃度增加,生長情況趨勢漸佳。綜合各項研究結果,新日本靈芝及環紋靈芝菌絲體的生長特性、生理性狀隨生存環境因素不同而有所差異。
菌絲核醣體的DNA定序結果,新日本靈芝的ITSⅠ-5.8S-ITS Ⅱ核苷酸序列分別為195-158-201 bp。環紋靈芝的ITS-5.8S-ITS Ⅱ核苷酸序列分別為208-158-195 bp。環紋靈芝與新日本靈芝及G.formosanum 0109親源關係較近。研究結果顯示rDNA的核苷酸序列分析可以輔助瞭解靈芝種間分子的演化情形。
Ganoderma neojaponicum was obtained from Taiwan, while G. zonatum was obtained from U. S. A. Hence their pure cultures were used for morphological, physiological studies and ribosomal DNA sequencing analysis.
The morphological characters of G. neojaponicum and G. zonatum were both observed as the white color on the mycelial mat’s surface, brown color on the other side, clamped generative hyphae and the appearance of swelling cells in culture.
The positive reaction in extracellular oxidases which included laccase and peroxidase, but negative in tyrosinase, indicated G. neojaponicum and G. zonatum belong to white rotting fungi, and showed that they can utilize lignin and cellulose of wood。
The results of physiological tests were shown as follows:
1.Optimum temperature for the mycelial growth of G. neojaponicum was at 24~28℃ on both of MEA and PDA, while G. zonatum was at 32℃ both on MEA and PDA.
2. Optimum pH for the mycelial growth of G. zonatum was 4.6, while G. neojaponicum was not prominent.
3. Glucose concentration at 40~80g/L was the optimum condition for the mycelial growth of G. neojaponicum and G. zonatum. The increasing glucose concentration neither increased nor decreased mycelial growth rate of G. neojaponicum, but decreased mycelial growth rate of the G. zonatum.
4.Starch was the best carbon source for both mycelial growth of G. neojaponicum and G. zonatum.
3. Optimum nitrogen concentration of ammonium nitrate (NH4NO3) was at 0.02N for the mycelial growth of the G. neojaponicum, but at 0.04N for the G. zonatum. Whereas the mycelial growth of G. zonatum was in proportion to the concentration of L-Asparagine (organic nitrogen form) , but not for G. neojaponicum.
Sequencing analyses of the ITS1-5.8S-ITS2 ribosomal DNA in G. neojaponicum are 195bp-158bp-201bp and in G. zonatum are 208bp-158bp-195bp respectively. The sequences data showed that G. zonatum was close to G.formosanum 0109 and G. neojaponicum. The phylogenetic relationship tree constructed from their study will aid to realize the molecular evolution among Ganoderma spices.
Adaskaveg, J. E. and R. L. Gilbertson. 1986. Cultural studies and genetics of sexuality of the G. lucidum and G. tsugae in relation to the taxonomy of the G. lucidum complex. Mycologia 78:700-711.
Chung-Yuh, Zeng-Yung Yeh, and Guey-Jen Lee-Chen. 1996. Analysis of Genetic Diversity of Two Intersterility Groups of Ganoderma australe by DNA Seqoencing.師大生物學報 31(1): 47-53。
Baura G., T.M. Szaro and T. D. Bruns. 1992 Gastrosuillus laricinus is a recent derivative of Suillus grevillei: molecular evidence. Mycologia, 84: 592-597.
Berbee, M. L., Yoshimura, A., Sugiyama J. and Taylor, J. W. 1995. Is Penicillium monophyletic? An evaluation of phylogeny in the family Trichocomaceae from 18S, 5.8S and ITS ribosomal DNA sequence data. Mycologia, 87: 210-222.
Bose, S. R. 1929. Artificial culture of Ganoderma lucidum Leyss. From spore to spore. Bot. Gaz. 87:665-667.
Carbone I., L. M. Kohn 1993. Ribosomal DNA sequence divergence within internal transcribed spacer I of the Sclerotiniaceae. Mycologia, 85:415-427.
Chippindale, P. T. and J. J. Wiens. 1994. Weighting, partitioning, and combing Charactersin phylogenetic analysis. Syst. Biol. 43: 278-287.
Corner, E. J. H. 1932. A Fomes with two system of hyphae. Trans. Brit. Mycol. Soc. 17: 51-81.
Davidson, R. W., W. A. Campbell and D. B. Vaugbn. 1942. Fungi causing decay of living oaks in the eastern United States and their cultural identification. Tech. Bull. Dep. Agric. Washington 63 pp.
Do, J. H. and S. D. Kim, 1985. Properties of amylase produced from higher fungi. Kor. J. Microbiol. 13:173-178.
Donk, M. A. 1933. Revision der Niderlandischen Homo-Basidomycetae—Aphyllpphoraceae Ⅱ. Mederl. Mycol. Ver. Meded. 22: 1-278.
Donk, M. A. 1948. Ganodermataceae Donk. Bull. Bot. Gdns. Buitenz. III, 17: 474
Eo, S. K., Y. S. Kim., C. K. Lee, and S. S. Han. 2000. Possible mode of antiviral activity of acidic protein bound polysaccharide isolated from Ganoderma lucidum on herpes simplex viruses. J. Ethnopharmacol. 72(3):475-481.
Falck, R. 1926. Uber korrosive und destructive Holzzersetzung und ihre biologischee Bedeutung. Ber. Dt. Bot. Ges. 44: 652-664.
Furtado, J. S. 1965. Relation of microstructures of taxomy of the Ganodermatoideae (Polyporaceae) with special reference to the structure of the cover of the pilear surface. Mycologia 57: 588-611.
Garber R. C., B. G. Turgeon, E. U. Selker, and O. C. Yoder. 1988 Organization of the ribosomal DNA genes in the fungus
Cochliobolus heterostrophus. Curr. Genet.14: 573-582.
Gan, K. H., Y. F. Fann, S. H. Hsu, K. W. Kuo, and C. N. Lin, 1998. Mediation of the cytotoxicity of lanostanoids and steroids of Ganoderma tsugae through apoptosis and cell cycle. J .Nat. Prod. 61:485-487.
Goodwin, P. H., T. Hsiang, B. G. Xue, and H. W. Liu, 1995. Rapid identification of genetic variation and pathotype of Leptosphaeria maculans by random amplified polymorphic DNA assay. Appl. Environ. Microlbiol. 57:2482-2468.
Hamby R. K. and E. A. Zimmer. 1988. Ribosomal RNA sequence for inferring phylogeny within the grass family (Poaceae). Plant. Syst. Evol. 160:29-37.
Hseu R. S., Wang H. H., Wang H. F. and Moncalvo J. M. 1996. Differention and grouping of isolates of the Ganoderma lucidum complex by random amplified polymorphic DNA-PCR compared with grouping on the basis of internal transcribed spacer sequences. Appl. Environ. Microbio., 62(4):1354-1363.
Hibbett, D. S. 1992. Ribosomal RNA and fungal systematics. Trans. Mycol. Soc. Japan 33: 533-556.
Highley, T. L. and T. K. Kirk. 1979. Mechanism of woody decay and the unique features of heart rots. Phytopathology. 69:1151-1157.
Ho, Y. M. and A. Nawaki. 1986. Germination studies of G. boninese spores from oil palm in Malaysia. Pertanika 9: 151-154.
Hong, J. S., Y. H. Choi and S. E. Yun. 1986. Studies on the cellulolytic enzymes produced by Ganoderma lucidum in synthetic media. Kor. J. Mycol. 14: 121-130.
Jasalavich, C. A., Morales, V. M., Pelcher, L. E. and Seguin-Swartz G. 1995. Comparison of nuclear ribosomal DNA sequences from Alternaria sp. pathogenic to crucifers. Mycol. Res. 99:604-614.
Jülich, W. 1981. Higher taxa of Basidiomycetes. Biblioth. Mycol. 85. J. Cramer Vaduz.
Käärik, A. 1965. The identification of the Mycelia of wood-decay fungi by their oxidation reactions with phenolic compounds. Studia forest. Succ. 31:1-38.
Karsten, p. A. 1881. Enumeratio Boletinearrum et Polyporearum Fennicarum, Systemate novo dispositarum. Rev. Mycol. 3: 16-19.
Kirk, T. K., E. Schultz, W. J. Oonnors, L. F. Lorenz, and J. G. Zeikus. 1978. Influence of culture parameters on lignin metabolism by Phaenerochaete chrysporporium . Arch Microbiol. 117:277-285.
Kino, K., K. Mizumoto, T. Sone, J. Yamaoka, K.Yamashita, A. Watanabe, and H. Tsunoo, 1990. An immunomodulatory protien, Ling Zhi-8, prevents insulitis in non-obese diabetic mice. Diabetologia. 33, 713-720.
Kim, Y., S., Eo, S. K., Oh, K. W., Lee, C. K., and Han, S. S. 2000.Antiherpetic activities of acidic protein bound polysacchride isolated from Ganoderma lucidum alone and in combinations with interferons . J. Ethnopharmacol. 72(3):451-458.
Kumari, H. L. and M. Sirsi , 1971. Purification and properties of endopolygalacturonase from Ganoderma lucidum J. Gen. Microbiol.65:258-290.
Kwon, O. Y. and H. Ishikawa. 1992. Nucleotide sequence and presumed secondary structure of the internal transcribed spacers of rDNA of the pea aphid, Acryrthosiphon pisum. Comp. Biochem. Physio. 103B: 651-655
Levi, M. P., W. Merrill, and E. B. Cowling. 1968. Role of nitrogen in wood deteriation VI. Mycelial fractions and model nitrogen compounds as substances for growth of Polyporus versicolor and other wood-destroying and wood-inhabiting fungi. Phytopathology 58:626-634.
Lee, S. B. and J. W. Taylar. 1992. Phylogeny of five fungus-like protoctistan Phytophthora species, inferred from the internal transcribed spacer of ribosomal DNA. Molec. Biol. Evol., 9:636-653.
LuBoglio, K. F., J. I. Pitt, and J. W. Taylor. 1993 Phylogenetic analysis of two ribosomal RNA regions indicates multiple independent losses of a sexual Talaromyces state among asexual Penicillium species in subgenus Biverticillium. Mycologia 85: 592-604.
Mayer, A. M. and E. Harel. 1979. Polyphenol oxidase in plants. Phytochemistry 18: 193-215.
Min, B. S., N. Nakamura, H. Miyashiro, K. W. Bae, and M. Hattori, 1998. Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease. Chem. Pharm. Bull. (Tokyo). 46:1607-1612.
Molitoris, H. P. 1978. Wood degradation, phenoloxidase and chemotaxonomy of higher fungi. Mushroom Science 10: 243-263.
Moncalvo J.M., H. F. Wang and R. S. Hseu, 1995. Phylogenetic relationship in Ganoderma in ferred from the internal transcribed spacers and 25S ribosomal DNA sequences. Mycologia 87:223-238.
Moncalvo J.M., H. F. Wang and R. S. Hseu, 1995. Gene phylogeny of the Ganoderma lucidum complex based on ribosomal DNA sequences. Comparison with triditional taxonomic characters. Mycological Research 99(12):1489-1499.
Moncalvo J.M., H. F. Wang and R. S. Hseu, 1996. Differention and grouping of isolates of the Ganoderma lucidum complex by random amplified polymorphic DNA-PCR compared with grouping on the basis of internal transcribed spacer sequences. Appl. Environ. Microbio., 62(4):1354-1363.
Morales, V. M., Jasalavich, V. M., Pelcher, L. E., Petrie, G. A., and Tayler, J. L. 1995. Phylogenetic relationship among several Leptosphaeria sp. based on their ribosomal DNA sequences. Mycol. Res. 99: 593-603.
Murrill, W. A. 1908. Polyporaceae. North American Flora. 9: 73-132.
Nakasone, K. K. 1990. Culture studies and identification of wood-inhabiting Corticiaceae and selected Hymenomycetes from North America. Mycol. Mem. 15:1-42.
Nobles, M. K. 1948. Studies in forest pathology. Ⅵ. Indetification of cultures of wood-rotting fungi. Canad. J. Res. C. 26: 281-431.
Nobles, M. K. 1965. Identification of cultures of wood-inhabiting Hymenomycetes. Can. J. Bot. 43:1097-1139.
Park, W. M., Y. S. Lee, S. H. Kim, and Y. H. Park. 1986. Characterization of isolates of Ganoderma lucidum by electrophoretic patterns of enzymes. Kor. J. Mycol. 14:93-99.
Stalpers, J. A. 1978. Identification of wood-inhabiting Aphyllophorales in pure culture. Centraalbureau Voor Schimmelcultures, Baarn. Studies in Mycology 16: 1-248.
Steyaert, R. L. 1972. Species of Ganoderma and related genera of the Bogor and Leiden Herbaria. Persoonia 7:55-118.
Su, C. H., C. S. Sun, S.W.J uan, C. H. Hu, W. T. Ke, and M. T. Sheu, 1997. Fungal mycelia as the source of chitin and polysaccharides and their applications as skin substitutes. Biomaterials. 18(17):1169~1174.
Su, C. H., C. S. Sun, S. W. Juan, C. H. Hu, W. T. Ke, and M. T. Sheu, 1999. Fungal mycelia as the source of chitin and polysaccharides and their applications as skin substitutes. Biomaterials (incorporating Clinical Materials) 18(17):1169-1174.
Su, C. Y., M. S. Shiao and C. T. Wang, 2000. Potentiation of ganodermic acid S on prostaglandin E1-induced cyclic AMP elevation in human platelets. Thromb. Res. 99(2):135-145.
Takaiwa, F., K. Oono, and M. Sugiura. 1985. Nucleotide sequence of the 17-25S spacer region from rice rDNA. Plant Mol. Biol. 4:355-364.
Taylor, J. R. 1974. Biochemical test for identification of mycelial culture of Basidiomycetes. Ann. Asppl. Biol. 78:113-123.
Tseng, T. C. and L. S. Chang. 1988. Studies on Ganoderma lucidum Ⅳ. Production of pectolytic enzymes. Bot. Bull. Acad. Sin. 29:23-32.
Tuite, J. 1969. Plant pathological methods: fungi and bacteria Lafayette, Indiana. Venkatarayan, S.V. 1936. The biology of Ganoderma lucidum on Areca and coconut plant. Phytopathology 26:153-175.
Venkatarayan, S. V. 1936. The biology of Ganoderma lucidum on areca and coconut palms. Phytopathology 26: 153-175.
Veldman, G. M., J. Klootwyk, H. van Heerikhuizen, and R. J. Planta. 1980. Some characters of processing sites in ribosomal precursor RNA of yeast. Nucleic Acids Res. 8: 2970-2920.
Vilgalys R. and D. Gonzales. 1990 Organization of the ribosomal DNA in the basidiomycete Thanathephorus praticola. Curr. Genet., 18: 277-280.
Wang, S. Y., Hsu., M, L., Hsu, H. C., Tzeng, C. H., Lee, S. S., Shiao, M. S. and Ho, C. K. 1997. The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. Int. J . Cancer. 70:699-705.
White, T. J., T. Bruns, S. Lee, and J. Taylar Amplification and direct sequencing of fungal Ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand D. H., Sninsky J. J., White T. J.,(editors): PCR Protocols. Pp315-22. Academic Press, Inc., California, 1990
Yang, F. C. and Liau, C. B. 1998. The influence of environmental conditions on polysaccharide formation by Ganoderma lucidum in submerged cultures. Process Biochem. 33(5):547-553.
Yeh, Z. Y. and Z. C. Chen.1990. Preliminary investigations of Ganoderma australe (subgen. Elfvingia) in Taiwan. 35(2):127-141.
Zambino P. J. and L. J. Szabo. 1993. Phylogenetic relationships of selected cereal and grass rusts based on rDNA sequence analysis. Mycologia, 85:401-414.
王伯徹,華傑,1991。靈芝培養彩色圖誌。新竹食品工業研究所。
王伯徹,2000。具開發潛力食藥用菇介紹。食品工業32(5):1-16。
王次男,1990。寄生澳洲胡桃之三種靈芝及其防治。台灣糖業研究所研究彙報第129號:1-10。
水野卓、合川正允,賴慶亮譯,1997。菇類的化學、生化學。國立編 譯館,台北。
李明仁,1989。靈芝菌與新日本靈芝菌引起相思樹、鳳凰木及綠竹之根腐病。嘉義農專學報,19: 36-45。
林志彬,1992。靈芝多醣的免疫藥理研究及其意義。北京醫科大學
學報,24(4):271-274。
林志彬,2001。靈芝的現代研究。北京醫科大學、中國協和醫科大學聯合出版社。212頁。
吳聲華,周文能,王也珍,王伯徹,2000。台灣潛在食要用真菌培養彩色圖鑑。食品工業研究所。pp.56-63
高益槐,2000。世紀奇草話靈芝。元氣齋出版社,台北市。
野島有雄,1931。靈芝(Polyporus japonicium Fries) 的研究。植物病蟲害研究 1:175-191
許瑞祥,1988。靈芝的奧秘。正義出版社,台北市。
許瑞祥,1990。靈芝屬植珠鑑定系統之研究。國立台灣大學農業化
學研究所博士論文。
陸文梁,林忠平,林志彬,1993。靈芝的科學應用。科學出版社,北京。
張東柱,1983。台灣數種靈芝生物學上之研究。國立台灣大學植物
病蟲害研究所植物病理組碩士論文。
游英欽,1996。以搖瓶振盪及小型發酵槽培養,探討培養基組成及
物理化學因子,對靈芝多醣生長形態變化的影響。國立交通大學生物科技研究所碩士論文
葉增勇,張君玉和李桂楨,1995。利用PCR與RFLP技術分析台灣
產南方靈芝兩不孕性之遺傳變異。師大生物學報 30(2): 117-124。
葉增勇,1990。台灣產南方靈芝複合種之分類學研究。國立台灣大學
植物學博士論文。
楊革,1997。靈芝菌絲體深層培養及多糖提取工藝研究。食用菌
19 (2) 8-9。
蔡阿輝,1981。靈芝菌之初步研究。學士論文。中興大學。共22頁。
趙繼鼎,1988。中國靈芝科的分類研究:8個訂正種和3個新種。真菌學報 6: 199-210。
趙繼鼎,1989。中國靈芝科分類研究XI: 靈芝亞屬靈芝組。真菌學
報8(1):25-34 。
趙繼鼎、張小青,2000。中國真菌誌。18: 27-143。
蘇慶華,1991。靈芝之分類學及生理活性物質。北醫學報20: 1~16。
趙書慶,1998。利用核醣體DNA的內轉錄區鑑定蟲草屬真菌。台北醫學院細胞及分子生物研究所碩士論文。
關洪昌、叢靜靜,1981。靈芝多醣D6對核酸、蛋白質合成的影響及其初步分析。北京醫學院學報13 (4) 261~263。