簡易檢索 / 詳目顯示

研究生: 余鎮奎
Yu, Jhen-Kuei
論文名稱: 催化劑控制亞胺葉立德進行 (3+2) 環加成反應之位向選擇性並合成高鏡像選擇性之 Chromanopyrrolidines 藉由有機膦試劑及鹼催化下進行 Wittig 反應並控制其化學選擇性高效率合成多取代呋喃分子。
Catalysts controlled regioselective (3+2) cycloaddition between azomethine ylide and indandionebenzylidines to prepare highly enantioselective chromanopyrrolidines Synthesis of functionalized furans via chemoselective reduction/Wittig reaction using catalytic trimethylamine and phosphine
指導教授: 林文偉
Lin, Wen-Wei
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 382
中文關鍵詞: 有機催化有機膦試劑不對稱合成
DOI URL: https://doi.org/10.6345/NTNU202202854
論文種類: 學術論文
相關次數: 點閱:95下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • I. 催化劑控制亞胺葉立德進行 (3+2) 環加成反應之位向選擇性並合成高鏡像選擇性之 Chromanopyrrolidines。
    II. 藉由有機膦試劑及鹼催化下進行 Wittig 反應並控制其化學選擇性高效率合成多取代呋喃分子。
    第一章:透過亞胺葉立德前趨物進行 (3+2) 環加成反應,建立高光學選擇性的 Chromanopyrrolidines。過去對於 Chromanopyrrolidines 不同異構物合成中,較為困難地 Chromano[3,4-b]pyrrolidines 以高效率高立體選擇性的方式建構。於合成過程中克服了過去對於加成位向選擇性的限制並且加以控制。此外,對其選擇性來源及 (3+2) 環加成部分進行機構的探討。
    第二章:以本實驗室早期開發高官能性呋喃化合物之方法,進一步改良為催化途徑,以提高反應之效率。透過一連串反應優化,成功地得以控制反應的選擇性以及排除副反應之影響,建立一高效的還原反應、Michael 反應、氧醯化反應、分子內 Wittig 反應的循環。

    I. Catalyst-controlled regioselective (3+2) cycloaddition of azomethine ylide and indandionebenzylidines for synthesis of highly enantioselective chromanopyrrolidines.

    II. Synthesis of functionalized furans via chemoselective reduction/Wittig reaction using catalytic triethylamine and phosphine

    Part I. A novel and highly enantioselective (3+2) cycloaddition/esterification cascade for the synthesis of chromano[3,4-b]pyrrolidine derivatives is reported. Quinine-derived base, hydroquinine squaramide, affects this cascade reaction efficiently providing the products in good yields and stereoselectivities. Furthermore we found out the interesting phenomenon while the basicity change the reioselectivity of (3+2) cycloaddition could be controlled. The mechanism of how the regioselectivity could be controlled is also revealed in this work.

    Part II. An efficient protocol for the synthesis of highly functionalized furans via intramolecular Wittig reaction has been developed using catalytic amounts of phosphine and triethylamine. Silyl chloride served as the initial promoter to activate the phosphine oxide. Reduction of the activated phosphine oxide by hydrosilane resulted in the generation of phosphine, while the decomposition of triethylamonium chloride resulted in the regeneration of base, both of which mediated the formation of phosphorus ylide. Remarkably, the in situ generated by-product, triethylammonium chloride, is also found to catalyze the reduction of phosphine oxide.

    目錄 第一章、催化劑控制亞胺葉立德進行 (3+2) 環加成反應之位向選擇性並合成高鏡像選擇性之 Chromanopyrrolidines 1-1 前言 7 1-1-1 (3+2) 環加成反應及 1,3-偶極化合物 7 1-1-2 亞胺葉立德 (Azomethine Ylide) 9 1-1-3 亞胺異構化及其反應 10 1-1-3-1 異構化 11 1-1-3-2 亞胺進行不對稱催化 Umpolung 反應 13 1-1-3-3 亞胺葉立德 (3+2) 環加成反應之位向選擇性 15 1-2 研究動機 15 1-2-1 催化劑控制產物生成之位向選擇性 15 1-2-2 合成 Chromanopyrrolidine 方法的開發 15 1-2-2-2 Chromano[4,3-b]pyrrolidines 及 Chromano[3,4-c]pyrrolidines 的合成 16 1-2-2-3 Chromano[3,4-b]pyrrolidines 合成策略 18 1-3 實驗結果及討論 19 1-3-1 非掌性催化劑進行亞胺葉立德環加成反應之位向選擇性探究 19 1-3-1-1 環境酸鹼性及起始物官能基效應對加成位向之影響 19 1-3-1-2 利用1H-NMR 進行亞胺起始物 46a 於不同環境之變化偵測 21 1-3-1-3 控制反應位向選擇性之機構探討 24 1-3-2 Chromano[3,4-b]pyrrolidines 合成之反應條件優化 26 1-3-3 非鏡像異構物 (Diastereomer) 及旋轉異構物 (Rotamer) 之確認 29 1-3-4 Chromano[3,4-b]pyrrolidines 合成及其衍生化 32 1-4 結論及未來展望 34 1-4-1 催化劑設計及產物 58 的製備方法 35 1-4-2 反應機構之深入探究 38 1-5 實驗部分 39 1-5-1 分析儀器及基本實驗操作 39 1-5-2 實驗操作步驟 39 1-5-3 光譜數據 42 1-6 參考資料 73 附件一 76 附件二 154 附件三 173 第二章、藉由有機膦試劑及鹼催化下進行 Wittig 反應並控制其化學選擇性高效率合成多取代呋喃分子。 2-1 前言 246 2-1-1 有機膦試劑及其催化反應的應用 246 2-1-1-1 有機膦試劑親核性活化 246 2-1-1-2 有機膦試劑氧化 247 2-1-2 氧化膦的還原反應 247 2-1-2-1矽烷類還原劑及其他還原法 247 2-1-2-2膦試劑的還原活性 249 2-1-3 反應中建立還原系統以達成膦試劑循環利用 249 2-2 研究動機 254 2-2-1 建立更高效的呋喃合成途徑 255 2-2-2 還原反應的選擇性 256 2-3 實驗結果及討論 257 2-3-1 四取代呋喃合成之反應條件優化 257 2-3-2 四取代呋喃合成之取代基效應探討 259 2-3-3 膦試劑還原相關控制實驗 261 2-3-3-1 控制實驗對膦試劑還原受反應酸鹼性之影響探討 261 2-3-3-2 透過 31P-NMR 對膦試劑氧化之過程進行追蹤 263 2-3-3-3 TESCl扮演的角色及對氧化膦試劑還原之影響 266 2-3-4 還原反應化學選擇性之深入探究 267 2-4 結論 269 2-5 實驗部分 270 2-5-1 分析儀器及基本實驗操作 270 2-5-2 操作步驟 270 2-5-3 光譜數據 272 2-6 參考資料 308 附件四 310

    第一章參考資料
    1. Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863.
    2. Adrio, J.; Carretero, J. C. Chem. Commun. 2014, 50, 12434.
    3. Allway, P ; Grigg, R. Tetrahedron Lett., 1991, 32, 5817.
    4. Grigg, R, Tetrahedron: Asymmetry 1995, 6, 2475-2486
    5. Longmire, J. M.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 13400.
    6. Gothelf, A. S.; Gothelf, K. V.; Hazell R. G.; Jorgensen, A. K. Angew. Chem. Int. Ed., 2002, 41, 4236.
    7. For lewis acid catalysis, see (a) Allway, P.; Grigg, R. Tetrahedron Lett., 1991, 32, 5817; (b) Grigg, R. Tetrahedron: Asymmetry 1995, 6, 2475; (c) Oderaotoshi, Y.; Cheng,W.; Fujitomi,S.; Kasano,Y.; Minakata, S.; Komatsu, M. Org. Lett. 2003, 5, 5043; (d) Cabrera, S.; Arrayás, R.-G.; Carretero, J.-C. J. Am. Chem. Soc. 2005, 127, 16394; (e) Yan, X.-X.; Peng, Q.; Zhang, Y.; Zhang, K.; Hong, W.; Hou, X.-L.; Wu, Y. D. Angew. Chem. Int. Ed. 2006, 45, 1979; (f) López-Pérez, A.; Adrio, J.; Carretero, J. C. J. Am. Chem. Soc. 2008, 130, 10084; (g) Hernández-Toribio, J.; Arrayás, R. G.; Martin-Matute, B.; Carretero, J. C. Org. Lett. 2009, 11, 393; (h) Wang, C.-J.; Xue, Z.-Y.; Liang,G.; Lu,Z. Chem. Commun. 2009, 2905; (i) Silvia, P.; Rubn, T.; Javier, A.; Carretero, J. C. Org. Lett. 2010, 12, 5608. For bronsted acid catalysis, see (j) Liu, W.-J.; Chen, X.-H. Gong, L.-Z. Org. Lett., 2008, 10, 5357. (k) Yu, J.; Chen, W.-J.; Gong, L.-Z. Org. Lett. 2010, 12, 4050. (l) Shi, F.; Luo, S.-W.; Tao, Z.-L.; He, L.; Yu, J.; Tu, S.-J.; Gong, L.-Z. Org. Lett. 2011, 13, 4680; (m) Shi, F. Tao, Z.-L.; Luo, S.-W.; Tu, S.-J.; Gong, L.-Z. Chem. Eur. J. 2012, 18, 6885. For secondary amine catalysis, see (n) Reboredo, S.; Vicario, J.; Badı´a, L.-D.; Carrillo, L.; Reyes, E. Adv. Synth. Catal., 2011, 353, 3307; (o) Lin, S.; Deiana, L.; Zhao, G.-L.; Sun, J.; Co´rdova, A. Angew. Chem. Int. Ed. 2011, 50, 7624. For bi-functional tertiary amine catalysis, see (p) Liu, Y.-H.; Liu, H.; Du, W.; Yue, L.; Chen, Y.-C. Chem. Eur. J. 2008, 14, 9873.(q) Bai, J.-F.; Wang, L.-L.; Peng, L.; Guo, Y.-L.; Ming, J.-N.; Wang, F.-Y.; Xu, X.-Y.; Wang, L.-X. Eur. J. Org. Chem. 2011, 23, 4472.
    8. (a) Watanabe, S.; Tada, A.; Tokoro, Y.; Fukuzawa, S.-i. Tetrahedron Lett. 2014, 55, 1306; (b)Xue, Z.-Y.; Liu, T.-L.; Lu, Z.; Huang, H.; Tao, H.-Y.; Wang, C.-J. Chem. Commun. 2010, 46, 1727.
    9. (a) Hut'ka, M.; Tsubogo, T.; Kobayashi, S. Adv. Synth. Catal. 2013, 355, 1561.(b) Shimizu, K.; Ogata, K.; Fukuzawa, S.-i. Tetrahedron Lett. 2010, 51, 5068; (c) Kim, H. Y.; Shih, H.-J.; Knabe, W. E.; Oh, K. Angew. Chem. Int. Ed. 2009, 48, 7420.
    10. Cabrera, S.; Arrayás, R. G.; Carretero, J. C. J. Am. Chem. Soc. 2005, 127, 16394.
    11. Awata, A.; Arai, T. Chem. Eur. J. 2012, 18, 8278.
    12. (a) Potowski, M.; Schürmann, M.; Preut, H.; Antonchick, A. P.; Waldmann, H. Nat. Chem. Biol. 2012, 8, 428. (b) He, Z.; Liu, T.; Tao, H.; Wang, C.-J. Org. Lett. 2012, 14, 6230. (c) Liu, K.; Teng, H.-L.; Yao, L.; Tao, H.-Y.; Wang, C.-J. Org. Lett. 2013, 15, 2250.
    13. (a) Lim, A. D.; Codelli, J. A.; Reisman, S. E. Chem. Sci. 2013, 4, 650. (b) Tsuge, O.; Kanemasa, S.; Hatada, A.; Matsuda, K., Bull. Chem. Soc. Jpn. 1986, 59, 2537; (c) Komatsu, M.; Okada, H.; Akaki, T.; Oderaotoshi, Y.; Minakata, S. Org. Lett., 2002, 4, 3505. (d) Hernández-Toribio, J.; Padilla, S.; Adrio, J.; Carretero, J. C. Angew. Chem. Int. Ed. 2012, 51, 8854.
    14. Shi, F.; Luo, S.-W.; Tao, Z.-L.; He, L.; Yu, J.; Tu, S.-J.; Gong, L.-Z. Org. Lett. 2011, 13, 4680.
    15. Yu,J.; Chen W .-J. ; Gong, L.-Z. Org. Lett. 2010, 12, 4050.
    16. Liu, W.-J; Chen, X.-H.; Gong, L.-Z. Org. Lett. 2008, 10, 5357.
    17. Shi, F.; Tao, Z.-L.; Luo, S.-W.; Tu, S.-J.; Gong, L.-Z. Chem. Eur. J. 2012, 18, 6885.
    18. (a) Reboredo, S.; Vicario, J. L.; Badı´a, D.; Carrillo, L.; Reyes, E. Adv. Synth. Catal. 2011, 353, 3307. (b) Lin, S.; Deiana, L.; Zhao, G.-L.; Sun J.; Co´rdova, A. Angew. Chem. Int. Ed. 2011, 50, 7624.
    19. (a) Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299; (b) Connon, S. J. Chem. Eur. J. 2006, 12, 5418.
    20. Han, X.; Lee, R.; Chen, T.; Luo, J.; Lu, Y.; Huang, K.-W. Sci. Rep. 2013, 3, 2557.
    21. (a) Liu, Y.-H.; Liu, H.; Du, W.; Yue, L.; Chen, Y.-C. Chem. Eur. J. 2008, 14, 9873 (b) Bai, J.-F.; Wang, L.-L.; Peng, L.; Guo, Y.-L.; Ming, J.-N.; Wang F.-Y.; Xu, X.-Y.; Wang, L.-X. Eur. J. Org. Chem. 2011, 2011, 4472.
    22. (a) Wu, Y.; Deng, L. J. Am. Chem. Soc. 2012, 134, 14334; (b) Xiao, X.; Xie, Y.; Su, C.; Liu, M.; Shi, Y. J. Am. Chem. Soc. 2011, 133, 12914.
    23. Chen, X.-H.; Wei, Q.; Luo, S.-W.; Xiao, H.; Gong, L.-Z.; J. Am. Chem. Soc. 2009, 131, 13819.
    24. (a) Martell, A. E. Acc. Chem. Res. 1989, 22, 115. (b) Breslow, R. Acc. Chem. Res. 1995, 28, 146. (c) Murakami, Y.; Kikuchi, J.; Hisaeda, Y.; Hayashida, O. Chem. Rev. 1996, 96, 721. (d) De Wildeman, S. M. A.; Sonke, T.; Schoemaker, H. E.; May, O. Acc. Chem. Res. 2007, 40, 1260. (e) Zhu, D.; Hua, L. Biotechnol. J. 2009, 4, 1420. (f) Ward, J.; Wohlgemuth, R. Curr. Org. Chem. 2010, 14, 1914.
    25. Matsumoto, M.; Harada, M.; Yamashita, Y.; Kobayashi, S. Chem. Commun. 2014, 50, 13041.
    26. (a) Wu, Y.; Hu, L.; Li, Z.; Deng, L. Nature 2015, 523, 445; (b) Hu, L.; Wu, Y.; Li, Z.; Deng, L.; J. Am. Chem. Soc. 2016, 138, 15817.
    27. Zhou, X.; Wu, Y.; Deng, L. J. Am. Chem. Soc. 2016, 138, 12297.
    28. Chen, P.; Yue, Z.; Zhang, J.; Lv, X.; Wang, L.; Zhang, J. Angew. Chem. Int. Ed. 2016, 55, 13316.
    29. Su, J.; Ma, Z.; Li, X.; Lin, L.; Shen, Z.; Yang, P.; Li, Y.; Wang, H.; Yan, W.; Wang, K.; Wang, R. Adv. Synth. Catal. 2016, 358, 3777.
    30. Chen, X.-H.; Wei, Q.; Luo, S.-W.; Xiao, H.; Gong, L.-Z. J. Am. Chem. Soc. 2009, 131, 13819.
    31. Ma, D.; Yang, J. J. Am. Chem. Soc. 2001, 123, 9706.
    32. Hanessian, S.; Bayrakdarian, M.; Luo, X. J. Am. Chem. Soc. 2002, 124, 4716.
    33. Zaccardi, J.; Alluri, M. Ashcroft, J.; Bernan, V.; Korshalla, J. D.; Morton, G. O.; Siegel, M.; Tsao, R.; Williams, D. R. J. Org. Chem. 1994, 59, 4045.
    34. Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Qiu, S.; Ding, Y.; Gao, W.; Stuckey, J.; Krajewski, K.; Roller, P. P.; Tomita, Y.; Parrish, D. A.; Deschamps, J. R.; Wang, S. J. Am. Chem. Soc. 2005, 127, 10130.
    35. Burton, G.; Ku, T. W.; Carr, T. J.; Kiesow, T.; Sarisky, R. T.; Lin-Goerke, J.; Baker, A.; Earnshaw, D. L.; Hofmann, G. A.; Keenan, R. M.; Dhanak, D. Bioorg. Med. Chem. Lett. 2005, 15, 1553.
    36. Ibrahem, I.; Rios, R.; Vesely, J.; Córdova, A. Tetrahedron Lett. 2007, 48, 6252-6257.
    37. Kamat, D.-P.; Tilve, S.-G.; Kamat, V.-P.; Kirtany, J.-K. Org. Prep. Proced. Int. 2015, 47, 1.
    38. Zhang, X.-F.; Xie, L.; Liu, Y.; Xiang, J.-F.; Li, L.; Tang, Y.-L.; J. Mol. Struct. 2008, 888, 145.
    39. Marzouk, M. M.; Elkhateeb, A.; Ibrahim, L. F., Hussein, S. R.; Kawashty, S. A. Rec. Nat. Prod., 2012, 6, 237.
    40. Fan, L.-P.; Yang, W.-J.; Xu, D.-C.; Li, X.-S.; Xie, J.-W. Synth. Commun. 2011, 41, 3376.
    41. Chang, G.-H.; Wang, C.-Y.; Madhusudhan Reddy, G.; Tsai, Y.-L.; Lin, W. J. Org. Chem. 2016, 81, 10071.
    42. (a) Tian, L.; Xu, G.-Q.; Li, Y.-H.; Liang, Y.-M.; Xu, P.-F. Chem. Commun. 2014, 50, 2428; (b) Kowalczyk, D.; Albrecht, Ł. J. Org. Chem. 2016, 81, 6800.
    43. Li, T.; Xu, G.-Q.; Li, Y.-H.; Liang, Y.-M.; Xu, P.-F. Chem. Commun. 2014, 50, 2428.
    44. Yang, P.-H.; Zhang, Q.-Z.; Sun, W. Res. Chem. Int. 2012, 38, 1063.
    45. (a) Yang, Y.; Zheng, K.; Zhao, J.; Shi, J.; Lin, L.; Liu, X.; Feng, X. J. Org. Chem. 2010, 75, 5382; (b) Claudio, C.; Francesco, M.; Esther, T.; Sean, T.; Stephen, J. C. Org. Lett. 2012, 14, 1850.; (c) Kong, L.-P.; Li, N.-K.; Zhang, S.-Y.; Chen, X.; Zhao, M.; Zhang, Y.-F.; Wang, X.-W. Org. Biomol. Chem. 2014, 12, 8656.

    第二章參考資料
    1. For selected examples, see: (a) Cao, P.; Li, C.-Y.; Kang, Y.-B.; Xie, Z.; Sun, X.-L.; Tang, Y. J. Org. Chem. 2007, 72, 6628; (b) Dai, W.-M.; Wu, A.; Wu, H. Tetrahedron: Asymmetry 2002, 13, 2187; (c) Shi, L.; Wang, W.; Wang, Y.; Huang, Y. J. Org. Chem. 1989, 54, 2027.
    2. Huang, Z.-Z.; Tang, Y. J. Org. Chem. 2002, 67, 5320.
    3. Liao, Y.; Huang, Y.-Z. Tetrahedron Lett. 1990, 31, 5897.
    4. For selected examples, see: (a) Henriksson, J.; Johannisson, A.; Bergqvist, P. A.; Norrgren, Arch. Environ. Contam. Toxicol. 1996, 30, 213.; (b) Taylor, A. Biol. Trace Elem. Res. 1996, 55, 231.; (c) Winship, K. A.; Adverse Drug React. Acute Poisoning rev. 1987, 6, 67 (d) Welch, A. H.; Westjohn, D. B,; Helsel, D.R.; Wanty, R.B. Ground Water, 2000, 38, 589
    5. (a) Rauhut, M. M.; Currier, H. (American Cyanamid Co.), U.S. Patent 307, 499, 919, 630, 122, 1963; Chem. Abstr. 1963, 58, 11224a; (b) Aroyan, C. E.; Dermenci, A.; Miller, S. J. Tetrahedron 2009, 65, 4069.
    6. (a) Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn.1968, 41, 2815. (b) Baylis, A. B.; Hillman, M. E. D. German Patent 2, 155, 113, 1972; Chem. Abstr. 1972, 77, 34174q
    7. Fan, Y. C.; Kwon, O. Chem. Commun. 2013, 49, 11588-11619.
    8. van Kalkeren, H. A.; Leenders, S. H. A. M.; Hommersom, C. R. A.; Rutjes, F. P. J. T.; van Delft, F. L. Chem. Eur. J, 2011, 17, 11290.
    9. Zhao, W.; Yan, P. K.; Radosevich, A. T. J. Am. Chem. Soc. 2015, 137, 616.
    10. For selected review, see: (a) Herault, D.; Nguyen, D. H.; Nuel, D.; Buono, G. Chem. Soc. Rev. 2015, 44, 2508; (b) Keglevich, G.; Gaumont, A.-C.; Denis, J.-M. Heteroat. Chem 2001, 12, 161.
    11. Fritzsche, H.; Hasserodt, U.; Korte, F. Chemische Berichte 1964, 97, 1988.
    12. For mechanism studies, see (a) Demchuk, O. M.; Jasiński, R.; Pietrusiewicz, K. M. Heteroat. Chem 2015, 26, 441;(b) Krenske, E. H. J. Org. Chem. 2012, 77, 3969.
    13. Fritzsche, H.; Hasserodt, U.; Korte, F. Chem. Ber. 1965, 98, 171.
    14. Horner, L.; Balzer, W. D. Tetrahedron Lett. 1965, 6, 1157.
    15. Appel, R. Angew. Chem. Int. Ed. 1975, 14, 801.
    16. Denton,R. M.; An, J.; Adeniran, B.; Blake, A. J.; Lewis, W.; Poulton, A. M. J. Org. Chem. 2011, 76, 6749-6767.
    17. Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635.
    18. van Kalkeren, H. A.; Bruins, J. J.; Rutjes, F. P. J. T.; van Delft, F. L. Adv. Synth. Catal. 2012, 354, 1417.
    19. Mitsunobu, O.; Yamada, Y. Bull. Chem. Soc. Japan. 1967, 40, 2380.
    20. Hirose, D.; Taniguchi, T.; Ishibashi, H. Angew. Chem. Int. Ed. 2013, 52, 4613.
    21. Buonomo, J. A.; Alderich,C. C. Angew. Chem. 2015, 17, 13233
    22. (a) Nair, V.; Mathew, S. C.; Biju, A. T.; Suresh, E. Angew. Chem. Int. Ed. 2007, 46, 2070;(b) Liu, X.-G.; Wei, Y.; Shi, M. Org. Biomol. Chem. 2009, 7, 4708.
    23. Fourmy, K.; Voituriez, A. Org. Lett. 2015, 17, 1537.
    24. O'Brien, C. J.; Lavigne, F.; Coyle, E. E.; Holohan, A. J.; Doonan, B. J. Chem. Eur. J. 2013, 19, 5854.
    25. (a) Wittig, G.; Schöllkopf, U. Chem. Ber. 1954, 87, 1318; (b) Wittig, G.; Haag, W. Chem. Ber. 1955, 88, 1654.
    26. O'Brien, C. J.; Tellez, J. L.; Nixon, Z. S.; Kang, L. J.; Carter, A. L.; Kunkel, S. R.; Przeworski, K. C.; Chass, G. A. Angew. Chem. Int. Ed. 2009, 48, 6836.
    27. Kao, T.-T.; Syu, S.-e.; Jhang, Y.-W.; Lin, W. Org. Lett. 2010, 12, 3066.
    28. Tanaka, H.; Yano T.; Kobayashi, K.; Kamenoue S.; Kuroboshi M.; Kawakubo H. Synlett. 2011, 4, 582-584

    無法下載圖示 本全文未授權公開
    QR CODE