簡易檢索 / 詳目顯示

研究生: 呂宜蓁
Yi-Chen Lu
論文名稱: 聚3, 4-二氧乙基噻吩奈米複合材料於超級電容之應用
Poly(3,4-ethylenedioxythiophene) Nanostructured Composites for Supercapacitor Application
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 87
中文關鍵詞: 聚3, 4-二氧乙基噻吩超級電容
英文關鍵詞: Poly(3,4-ethylenedioxythiophene), PEDOT, Supercapacitor
論文種類: 學術論文
相關次數: 點閱:130下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚3, 4-二氧乙基噻吩(PEDOT)擁有相對於其他導電高分子較大之可逆氧化還原電位,可擴大超級電容之電位範圍,提升能量與功率密度,並與其他陽極材料組合非對稱式超級電容器,改善對稱式導電高分子電容器之電位範圍侷限。
    本研究主要以電化學聚合法,首次成功合成直接成長於碳布基材之PEDOT奈米線。實驗條件為先以循環伏安法,掃描速率為10 mV/s掃描5圈,再加予1 mA之定電流成長5分鐘,可得直徑約60 nm之PEDOT奈米線。相對於PEDOT薄膜,PEDOT奈米線具有較高表面積並縮短離子擴散距離,以1 M硫酸為電解質,比電容量可達321.1 Fg-1。
    另使用直接成長於碳布之奈米碳管做為基材,以電化學循環伏安法(掃描速率為100 mV/s,掃描20圈),將PEDOT包覆於奈米碳管,形成直徑為167.2 nm之PEDOT-CNTs複合材料。利用碳管之高比表面積、導電性與低內電阻等特性,提升功率與功率密度。以1 M硫酸鈉為電解質,所得之能量密度可達138.3 Whkg-1;功率密度可達31.5 kWkg-1,在硫酸水溶液下可得比電容量為486.5 Fg-1。
    最後將PEDOT與適合做為陽極材料之聚苯胺(PANI)、氧化錳(MnO2)組合成非對稱式電化學電容器,其電位範圍可分別擴大至1.4 V與2.0 V,改善電位範圍狹隘之缺點。

    Poly(3,4-ethylenedioxythiophene)(PEDOT) has the larger reversible oxidation-reduction potential than other conducting polymers. According to this advantage, the potential window, specific energy and specific power of supercapacitor could be increase. Combination with PEDOT and anode materials as asymmetric supercapacitor could get wider cell voltage then symmetric conducting polymer supercapacitor.
    We had successfully synthesized the direct-grown PEDOT nanowires on carbon cloth by electrochemical polymerization. The 2 cycles of cyclic voltammogram at scan rate 10 mV/s, and then used galvanostatic to growth 5 minutes at 1 mA were operated to fabricated PEDOT nanowires. From SEM, the diameter of PEDOT nanowires was around 60 nm. Compare with PEDOT film, PEDOT nanowires exhibited high surface area and short diffusion distance. The specific capacitance of PEDOT nanowires electrode were 321.1 Fg-1 in 1 M H2SO4.
    Because of the high surface area, good electrical properties and low internal resistance, the direct-grown carbon nanotubes on carbon cloth was utilized as substrate to raise the power density and energy density. Under the condition of cyclic voltammogram scan (100 mV/s, 20 cycles), PEDOT can be uniformly coated on carbon nanotubes to form PEDOT-CNTs/CC core/shell nanocomposite. From SEM, the diameter of PEDOT-CNTs was 167.2 nm. Furthermore, the specific power and energy of the composite electrode could be increase to 31.5 kWkg-1 and 138.3 Whkg-1 in neutral electrolyte, and its specific capacitance was 486.5 Fg-1 in acidic electrolyte.
    Finally, we combine PEDOT with anode materials (PANI and MnO2) as asymmetric supercapacitor. The cell voltage could be extended to 1.4 V and 2.0 V.

    致 謝 I 摘 要 II Abstract III 總 目 錄 IV 圖 目 錄 VIII 表 目 錄 XII 第一章 緒 論 1 1-1 前言 1 1-2 電化學電容器 4 1-2-1 電化學電容器之發展歷史 4 1-2-2 電化學電容器之分類 5 1-2-2.1 電雙層電容器 5 1-2-2.2 擬電容器 7 第二章 理論基礎與文獻回顧 10 2-1 導電高分子 10 2-1-1 導電高分子之發展 10 2-1-2 導電高分子之導電機制 11 2-1-3 導電高分子之合成 13 2-1-3.1 化學聚合法 13 2-1-3.2 電化學聚合法 15 2-1-4 導電高分子之分類 16 2-1-5 導電高分子之擬電容性質 18 2-1-6 導電高分子之電化學電容器分類 20 2-2 奈米碳管 22 2-2-1 奈米碳管之發展 22 2-2-2 奈米碳管之性質 23 2-2-3 奈米碳管之應用 24 2-3 電化學 25 2-3-1 電化學反應 25 2-3-2 電化學電容器之量測計算 26 2-4 文獻回顧 27 2-4-1 聚3, 4-二氧乙基噻吩 27 2-4-2 PEDOT之電化學電容器發展 28 2-5 研究動機 31 第三章 實驗步驟與儀器 32 3-1 實驗藥品與材料 32 3-2 實驗儀器 33 3-2-1 多通道恆電位分析儀 33 3-2-2 三電極系統 33 3-2-3 微波電漿化學氣相沉積系統 35 3-2-4 場發射掃描式電子顯微鏡 36 3-2-5 傅立葉轉換紅外線光譜儀 37 3-3 實驗流程 38 3-3-1 電極之製備 38 3-3-2 奈米碳管之成長 38 3-3-3 PEDOT奈米複合材料製備流程 39 第四章 實驗結果與討論 40 4-1 PEDOT薄膜 (PEDOT-Film/CC) 40 4-1-1 PEDOT-Film/CC之SEM影像 41 4-1-2 PEDOT-Film/CC之FTIR量測 42 4-1-3 PEDOT-Film/CC之循環伏安量測 43 4-1-4 PEDOT-Film/CC之充放電測試 46 4-2 PEDOT奈米線 (PEDOT-NWs/CC) 48 4-2-1 PEDOT奈米線之合成條件 48 4-2-1.1 製備PEDOT-NWs/CC循環伏安之圈數影響 51 4-2-1.2 製備PEDOT-NWs/CC成長時間之影響 52 4-2-2 PEDOT-NWs/CC之FTIR量測 53 4-2-3 PEDOT-NWs/CC之循環伏安量測 54 4-2-4 PEDOT-NWs/CC之充放電測試 55 4-2-5 PEDOT-NWs/CC之中性電解質測試 58 4-2-6 PEDOT-Film/CC與PEDOT-NWs/CC之能量、功率密度 61 4-3 PEDOT-奈米碳管複合材料 (PEDOT-CNTs/CC) 63 4-3-1 奈米碳管之成長 63 4-3-2 PEDOT-CNTs/CC之製備 64 4-3-3 PEDOT-CNTs/CC之FTIR量測 66 4-3-4 PEDOT-CNTs/CC之循環伏安量測 67 4-3-5 PEDOT-CNTs/CC之充放電測試 69 4-3-6 PEDOT-CNTs/CC之中性電解質測試 72 4-3-7 PEDOT-CNTs/CC之能量、功率密度 76 4-4 PEDOT-Film、PEDOT-NWs與PEDOT-CNTs/CC之綜合比較 77 4-4-1 比電容量 77 4-4-2 能量密度與功率密度 77 4-5 兩電極系統之量測 79 第五章 結 論 83 參考文獻 84

    [1] Fawwaz T. Ulaby, Eric Michielssen, Umberto Ravaioli, Fundamentals of Applied Electromagnetics, 6th, 2010, Prentice Hall
    [2]Patrice S., Yury G., Nature Materials, 2008, 7, 845
    [3]R. Ko¨tz,M. Carlen, Electrochimica Acta, 2000, 45, 2483
    [4]John R. M.,Patrice S., The Electrochemical Society Interface‧Spring, 2008, 53
    [5]黃瑞雄, 顏溪成, 科學發展, 2002, 359, 22
    [6]Helmholtz, H. Pogg. Ann., LXXXIX, 1853, 211
    [7]Gouy, G. Comt. Rend., Journal de Physique, 1909, 149, 654
    [8]Chapman, D.L., Philosophical Magazine, 1913, 6, 475
    [9]Stern, O. Z., Electrochem, 1924, 30, 508
    [10]Howard I. B., Vischers F.,N. Y., United States Patent Office, 1957-07-23
    [11]J. P. Zheng, J. Huang, T. R. Jow, Journal of the Electrochemical Society, 1997, 144, 2027
    [12]S. Nomoto, H. Nakata, K. Yoshioka, A. Yoshida, H. Yoneda, Journal of Power Sources, 2001, 97, 807
    [13] C. C. Hu, W. C. Chen, K. H. Chang, Journal of the Electrochemical Society, 2004, 151, A281
    [14] S. C. Pang, M. A. Anderson, T. W. Chapman, Journal of the Electrochemical Society, 2000, 147, 444
    [15]B. E. Conway, Journal of the Electrochemical Society, 1991, 138, 1540
    [16]江文彥, 科學發展, 2002, 359, 68
    [17]Alan J. H., Alan G. M., Hideki S., The Nobel Prize in Chemistry, 2000
    [18]Paul C. Hiemenz, Timothy P. Lodge, Polymer chemistry, 2ed, 2007, CRC Press
    [19]G. P. Gardimni, Advances in Heterocyclic Chemistry, 1973, 15, 67
    [20]M. Salmon, K. K. Kanazawa, A. F. Diza, M. Drounbi, Journal of Polymer Science: Polymer Letters Edition, 1982, 20, 187
    [21]H. S. Nalwa, L. R. Dalton, W. F. Schmidt, J. G. Rabe, Polymer Communications, 1985, 27, 210
    [22]Natalia V. Blinova, Journal of Physical Chemistry B, 2007, 111, 2440
    [23]Zvi Rappoport, The Chemistry of Aniline, 2007, Wiley
    [24]A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, John P. Ferraris, Journal of Power Sources, 1994, 47, 89
    [25]Terje A. Skotheim, John R. Reynolds, Conjugated Polymers: Processing and Applications, 2006, CRC Pr I Llc
    [26]M. Mastragostino, L. Soddu, Elecrrochimica Acta, 1990, 35, 463
    [27]M. Mastragostino, C. Arbizzani, R. Paraventi, A. Zanellia, Journal of The Electrochemical Society, 2000, 147, 407
    [28]K. Rajendra Prasad, N. Munichandraiah, Journal of Power Sources, 2002, 112, 443
    [29]Y. Y. Horng, Y. C. Lu, Y. K. Hsu, C. C. Chen, L. C. Chen, K. H. Chen, Journal of Power Sources, 2010, 195, 4418
    [30]V. Khomenko, E. Raymundo-Pinero, E. Frackowiak, F. B´eguin, Applied Physics A, 2006, 82, 567
    [31] X. Zou, S. Zhang, M. Shi, J. Kong, Journal of Solid State Electrochemistry, 2007, 11, 317
    [32] F. Fusalba, P. Gouérec, D. Villers, D. Bélanger, Journal of the Electrochemical Society, 2001, 148, A1
    [33] K. S. Ryu, K. M. Kim, N. G. Park, Y. J. Park, S. H. Chang, Journal of Power Sources, 2002, 103, 305
    [34] W. C. Chen, T. C. Wen, H. Teng, Electrochimica Acta, 2003, 48, 641
    [35] Y. K. Zhou, B. L. He, W. J. Zhou, J. Huang, X. H. Li, B. Wu, H. L. Li, Electrochimica Acta, 2003, 49, 257
    [36]Robert W. Bogue, Sensor Review, 2004, 24, 253
    [37]Sumio Iijima, Nature, 1991, 354, 56
    [38]T. W. Ebbesen, P. M. Ajayan, Nature, 1992, 358, 220
    [39]Sumio Iijima, Toshinari Ichihashi, Nature, 1993, 363, 603
    [40]D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savory, J. Vazquez, R. Beyers, Nature, 1993, 363, 605
    [41]陳貴賢, 科學人, 2007, 6, 54
    [42]P. Poncharal, Z. L. Wang, D. Ugarte, Walt A. de Heer, Science, 1999, 283, 1513
    [43]M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, G. Gruner, Nano Letters, 2009, 9, 1872
    [44]H. Zhang, G. Cao,W. Wang, K. Yuan, B. Xu,W. Zhang, J. Cheng, Y. Yang, Electrochimica Acta, 2009, 54, 1153
    [45]D.R.Crow, Principles and Applications of Electrochemistry, 2nd Ed, 1979, Chapman and Hall Ltd. London
    [46]A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2ed, 2001, Wiley
    [47]G. A. Snook, C. Peng, D. J. Fray, G. Z. Chen, Electrochemistry Communications, 2007, 9, 83
    [48]F. Tran-Van, S. Garreau, G. Louarn, G. Froyer, C. Chevrot, Journal of Materials Chemistry, 2001, 11, 1378
    [49]L. B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J. R. Reynolds, Advanced Materials, 2000, 12, 481
    [50]M. Fabretto,K. Zuber, C. Hall, P. Murphyb, H. J. Griesser, Journal of Materials Chemistry, 2009, 19, 7871
    [51]H. Gustafsson, C. Kvarnström, A. Ivaska, Thin Solid Films, 2008, 517, 474
    [52]S. Patra, N. Munichandraiah, Journal of Applied Polymer Science, 2007, 106, 1160
    [53]R. Liu, S. Il Cho, S. Bok Lee, Nanotechnology, 2008, 19, 215710
    [54]X. Zhang, J. S. Lee, G. S. Lee, D. K. Cha, M. J. Kim, D. J. Yang, S. K. Manohar, Macromolecules, 2006, 39, 470
    [55]C. Peng, J. Jin, G. Z. Chen, Electrochimica Acta, 2007, 53, 525
    [56]E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, F. B´eguin, Journal of Power Sources, 2006, 153, 413
    [57]C. H. Wang, H. C. Shih, Y. T. Tsai, H. Y. Du, L. C. Chen, K. H. Chen, Electrochimica Acta, 2006, 52, 1612
    [58]D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, 5th Ed, 1997, Brooks Cole
    [59]K. Fuji, K. Ohkawa, Japanese Journal of Applied Physics, 2005, 44, L 909
    [60]S. I. Cho, S. B. Lee, Accounts of Chemical Research, 2008, 41, 699

    無法下載圖示 本全文未授權公開
    QR CODE