簡易檢索 / 詳目顯示

研究生: 顏辰洋
Chen-Yang, Yen
論文名稱: X波段低雜訊放大器與K/Ka波段功率放大器之設計
Design of X-band Low Noise Amplifiers Using 0.15-μm GaAs p-HEMT process and K-/Ka-band Power Amplifier Using 90-nm CMOS process
指導教授: 蔡政翰
Tsai, Jeng-Han
口試委員: 蔡政翰
Tsai, Jeng-Han
鍾杰穎
Zhong, Jie-Ying
林文傑
Lin, Wen-Jie
口試日期: 2024/07/23
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 118
中文關鍵詞: 互補式金屬氧化物半導體砷化鎵應變式異質接面高遷移率電晶體功率放大器低雜訊放大器X頻段K頻段Ka頻段
英文關鍵詞: strained heterojunction high mobility transistor, gallium arsenide, complementary metal oxide semiconductor, power amplifier, low noise amplifier, X-band, K-band, Ka-band
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401477
論文種類: 學術論文
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 誌 謝 1 摘 要 2 ABSTRACT 3 目 錄 5 表 目 錄 8 圖 目 錄 9 第一章 緒論 15 1.1. 研究背景與動機 15 1.2. 文獻探討 16 1.2.1. 低雜訊放大器 16 1.2.2. 功率放大器 19 1.3. 研究成果 22 第二章 X波段低功耗低雜訊放大器介紹 23 2.1. 低雜訊放大器簡介 23 2.2. 電路設計 24 2.2.1. 電路架構 24 2.2.2. 電晶體尺寸和偏壓選擇 26 2.2.3. 單級設計 31 2.2.4. 偏壓電路設計 36 2.2.5. 低雜訊放大器第一版模擬結果 38 2.2.6. 低雜訊放大器第二版模擬結果 44 2.3.低雜訊放大器第一版量測結果 50 2.3.1. 低雜訊放大器第二版量測結果 56 2.3.2. 問題與討論 62 2.4. 結論 63 第三章 X波段二級低雜訊放大器介紹 65 3.1. 雙級設計 65 3.2. 電路設計與架構 66 3.3. 低雜訊放大器模擬結果 69 3.4. 低雜訊放大器量測結果 74 3.5.結論 80 第四章 K/Ka波段功率放大器介紹 82 4.1. 背景與動機 82 4.2. 電晶體尺寸與偏壓選擇 83 4.3. 電路設計與架構 85 4.3.1. 中和電路設計 85 4.3.2.電晶體佈局 87 4.3.3.操作Class B Load Pull功率放大器分析 90 4.3.4.輸出匹配網路設計 91 4.3.5.輸入匹配網路設計 95 4.3.6.功率放大器模擬結果 99 4.4. 功率放大器量測結果 104 4.4.1. 功率放大器大訊號量測結果 106 4.5. 結論 111 第五章 結論 113 參 考 文 獻 114 自 傳 118 學 術 成 就 118

    1. Hu, Z., O. Kazan, and G.M. Rebeiz. A quad-band RX phased-array receive beamformer with two simultaneous beams, polarization diversity, and 2.1–2.3 dB NF for C/X/Ku/Ka-band SATCOM. in 2023 IEEE Radio Frequency Integrated Circuits Symposium (RFIC). 2023. IEEE.
    2. Wu, M.-H., J.-H. Tsai, and T.-W. Huang, Ka-band calibration-free high image-rejection up/down mixers with 117% fractional IF bandwidth for SATCOM applications. IEEE Access, 2020. 8: p. 182133-182145.
    3. Hu, Z., et al., A 16-Channel 3.1–25.5-GHz Phased-Array Receive Beamformer IC With Two Simultaneous Beams and 2.0–2.4-dB NF for $ C $/$ X $/$ Ku $/$ Ka $-Band SATCOM. IEEE Transactions on Microwave Theory and Techniques, 2024.
    4. Xie, C., Z. Yu, and C. Tan, An X/Ku dual-band switch-free reconfigurable GaAs LNA MMIC based on coupled line. IEEE Access, 2020. 8: p. 160070-160077.
    5. Jiang, Y., et al. An X-band Low Noise Amplifier in 0.25-$mumathrm {m} $ GaAs pHEMT Process. in 2022 International Conference on Microwave and Millimeter Wave Technology (ICMMT). 2022. IEEE.
    6. Kazan, O., F. Kocer, and O.A. Civi. An X-band robust GaN low-noise amplifier MMIC with sub 2 dB noise figure. in 2018 13th European Microwave Integrated Circuits Conference (EuMIC). 2018. IEEE.
    7. Yelten, M.B., A 180-nm x-band cryogenic cmos lna. IEEE Microwave and Wireless Components Letters, 2020. 30(4): p. 395-398.
    8. RENESAS, F6921-Dual-Channel Low Noise Amplifier 10.7 – 12.75 GHz. Apr 8, 2021.
    9. Renesas, F6922-Dual-Channel Low Noise Amplifier for Ka-Band SATCOM. Jun 25, 2021.
    10. Renesas, F6923-Dual-Channel Low Noise Amplifier for Ku/CDL-Band. Jul 6, 2021.
    11. Lin, J.-L., et al. A K-band transformer based power amplifier with 24.4-dBm output power and 28% PAE in 90-nm CMOS technology. in 2017 IEEE MTT-S International Microwave Symposium (IMS). 2017. IEEE.
    12. Wang, R., et al. A Fully Integrated X-Band Phased-Array Transceiver in 0.13-μm CMOS Technology. in 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT). 2021. IEEE.
    13. Chen, P.-H., H.-C. Lin, and H.-K. Chiou. A Low Power Wideband Receiver Front End for C/X Band 5G Applications in 90 nm CMOS Technology. in 2023 Asia-Pacific Microwave Conference (APMC). 2023. IEEE.
    14. Timoshenkov, V., et al. GaAs Transceiver for X-band. in 2020 24th International Conference on Circuits, Systems, Communications and Computers (CSCC). 2020. IEEE.
    15. B. Yoon, I. S. Han, J. Kim and I. Ju, "A Compact, Highly Linear Ku-Band SiGe HBT Power Amplifier Using Shared Single Center-Tap Four-Way Output Transformer Balun for Emerging Low Earth Orbit SATCOM Phased-Array Transmitter, Radio Frequency Integrated Circuits Symposium (RFIC) 2024. IEEE.
    16. Ali, S.N., et al., A 40% PAE frequency-reconfigurable CMOS power amplifier with tunable gate–drain neutralization for 28-GHz 5G radios. IEEE Transactions on Microwave Theory and Techniques, 2018. 66(5): p. 2231-2245.
    17. Q. Cai, W. Che, K. Ma and Q. Xue, "A Compact Ku-Band Broadband GaAs Power Amplifier Using an Improved Darlington Power Stage," in 2020 IEEE Transactions on Microwave Theory and Techniques. 2020. IEEE.
    18. Shakib, S., et al. 2.7 A wideband 28GHz power amplifier supporting 8× 100MHz carrier aggregation for 5G in 40nm CMOS. in 2017 IEEE International Solid-State Circuits Conference (ISSCC). 2017. IEEE.
    19. Huang, T.-W., et al., A 19.7–38.9-GHz Ultrabroadband PA With Phase Linearization for 5G in 28-nm CMOS Process. IEEE Microwave and Wireless Components Letters, 2021. 32(4): p. 327-330.
    20. Ali, S.N., et al. A 28GHz 41%-PAE linear CMOS power amplifier using a transformer-based AM-PM distortion-correction technique for 5G phased arrays. in 2018 IEEE International Solid-State Circuits Conference-(ISSCC). 2018. IEEE.
    21. Kim, K., et al., A 28–34-GHz stacked-FET power amplifier in 28-nm FD-SOI with adaptive back-gate control for improving linearity. IEEE Solid-State Circuits Letters, 2021. 4: p. 52-55.
    22. Wang, F. and H. Wang. 24.6 An Instantaneously Broadband Ultra-Compact Highly Linear PA with Compensated Distributed-Balun Output Network Achieving> 17.8 dBm P 1dB and> 36.6% PAE P1dB over 24 to 40GHz and Continuously Supporting 64-/256-QAM 5G NR Signals over 24 to 42GHz. in 2020 IEEE International Solid-State Circuits Conference-(ISSCC). 2020. IEEE.
    23. Wang, F., T.-W. Li, and H. Wang. 4.8 A highly linear super-resolution mixed-signal Doherty power amplifier for high-efficiency mm-wave 5G multi-Gb/s communications. in 2019 IEEE International Solid-State Circuits Conference-(ISSCC). 2019. IEEE.
    24. Nguyen, T.-K., et al., CMOS low-noise amplifier design optimization techniques. IEEE Transactions on microwave theory and techniques, 2004. 52(5): p. 1433-1442.
    25. Nguyen, T.-K., et al. CMOS low noise amplifier design optimization technique. in The 2004 47th Midwest Symposium on Circuits and Systems, 2004. MWSCAS'04. 2004. IEEE.
    26. 2A Q-band LNA with 55.7% bandwidth for radio astronomy applications in 0.15-μm GaAs pHEMT process. in 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT). 2016. IEEE.
    27. Noel Deferm, Patrick Reynaert, CMOS Front Ends for Millimeter Wave Wireless Communication Systems, 2015.
    28. Kalyoncu, I., et al. A SiGe switched LNA for X-band phased-arrays. in 2012 7th European Microwave Integrated Circuit Conference. 2012. IEEE.
    29. Yasami, S. and M. Bayoumi. An ultra-low power current reused CMOS low noise amplifier for x-band space application. in 2012 19th IEEE International Conference on Electronics, Circuits, and Systems (ICECS 2012). 2012. IEEE.
    30. Chang, W., et al. X-band low noise amplifier MMIC using AlGaN/GaN HEMT technology on SiC substrate. in 2013 Asia-Pacific Microwave Conference Proceedings (APMC). 2013. IEEE.
    31. Kanar, T. and G.M. Rebeiz, X-and K-band SiGe HBT LNAs with 1.2-and 2.2-dB mean noise figures. IEEE transactions on microwave theory and techniques, 2014. 62(10): p. 2381-2389.
    32. Kim, D., et al., An X-band switchless bidirectional GaN MMIC amplifier for phased array systems. IEEE Microwave and Wireless Components Letters, 2014. 24(12): p. 878-880.
    33. Biondi, A., et al. Compact GaN MMIC T/R module front-end for X-band pulsed radar. in 2016 11th European Microwave Integrated Circuits Conference (EuMIC). 2016. IEEE.
    34. Calişkan, C., et al. A wideband low noise SiGe medium power amplifier for X-Band Phased Array applications. in 2016 11th European Microwave Integrated Circuits Conference (EuMIC). 2016. IEEE.
    35. He, M., Y. Peng, and B. Li. A reconfigurable low noise amplifier for X/Ku band. in 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT). 2018. IEEE.
    36. Wang, C., et al. A $ X-/K_ {mathrm {u}} $-Band QFN-Packaged GaAs LNA Supporting Dual-Polarization Signal Reception. in 2019 IEEE Asia-Pacific Microwave Conference (APMC). 2019. IEEE.
    37. Jiang, Y., et al. GaAs based MMIC LNA for X-band Applications. in 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). 2022. IEEE.
    38. Shakib, S., et al., A highly efficient and linear power amplifier for 28-GHz 5G phased array radios in 28-nm CMOS. IEEE Journal of Solid-State Circuits, 2016. 51(12): p. 3020-3036.
    39. Garay, E.F., D.J. Munzer, and H. Wang. 26.3 A mm-wave power amplifier for 5G communication using a dual-drive topology exhibiting a maximum PAE of 50% and maximum DE of 60% at 30GHz. in 2021 IEEE International Solid-State Circuits Conference (ISSCC). 2021. IEEE.
    40. Park, B., et al. Highly linear CMOS power amplifier for mm-wave applications. in 2016 IEEE MTT-S International Microwave Symposium (IMS). 2016. IEEE.

    無法下載圖示 本全文未授權公開
    QR CODE