簡易檢索 / 詳目顯示

研究生: 王品晴
Wang, Pin-Ching
論文名稱: (一)、藉由插烯-麥可/串級反應建構有多個四級碳中心的三氟甲基螺環吡唑哢二呋喃茚二酮 (二)、炔酸酯藉由MBH反應/醯基轉移/威悌反應建構呋喃香豆素 (三)、磷誘導藉由RC反應/醯基轉移/威悌反應建構螺環香豆素衍伸物 (四)、磷誘導乙烯基環丙烷開環/氧醯化/威悌反應建構 3-吡喃甲酮衍伸物
1. A Vinylogous Michael Addition-triggered Quadruple Cascade Reaction to Construct Multiple Quaternary Stereocenters 2.Phosphine-Mediated MBH-Type/Acyl Transfer/ Wittig Sequence for Construction of Functionalized Furo[3,2-c]coumarins 3.Phosphine-Mediated Rauhut-Currier-Type/Acyl Transfer/ Wittig Strategy for Synthesis of Spirocyclopenta[c]chromene-indolinones 4.Phosphine-Mediated Ring-Opening of Vinylcyclopropanes/ O-Acylation/ Wittig Reaction Strategy to Construct 4H-Pyran-3-yl-methanone Derivatives
指導教授: 林文偉
Lin, Wenwei
口試委員: 林文偉
Lin, Wenwei
陳焜銘
Chen, Kwunmin
劉維民
Liu, Wei-Min
口試日期: 2022/06/23
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 328
中文關鍵詞: 有機不對稱反應串級反應亞芳基吡唑哢亞芳基二氫茚二酮三氟甲基-螺吡唑二呋喃茚二酮衍伸物三苯基磷MBH反應醯基轉移威悌反應呋喃香豆素呋喃喹啉酮RC反應螺環環戊烯香豆素融合羟吲哚二氫茚二酮和吡唑哢磷化學乙烯基環丙烷酮型-烯醇型互變異構化吡喃衍伸物
英文關鍵詞: Organocatalytic, Cascade Reaction, Vinylogous Michael Reaction, trifluoromethyl-spiropyrazole-difuro-indandione skeleton, MBH Reaction, terminal and internal alkynoate, O-acylation, acyl transfer, Wittig reaction, Furo[3,2-c]coumarin, One-pot reaction, RC Reaction, seven-membered betaine intermediates, Phosphine chemistry, Vinylcyclopropane with donor-acceptor system, Halogention, Pyran product
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200819
論文種類: 學術論文
相關次數: 點閱:217下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

(一)我們開發了一種新穎性的不對稱有機催化方法建構複雜結構,其中包含五個四級碳中心的三氟甲基螺環吡唑哢二呋喃茚二酮衍伸物。在反應中使用亞芳基吡唑哢和亞芳基二氫茚二酮在方醯胺奎寧的催化和硬脂酸做為添加劑的幫助下,獲得三氟甲基-螺吡唑二呋喃茚二酮產物。反應中,藉由多次的麥可反應和關鍵引入三氟乙醯基以進行多次的合環反應,可以一次建構具有掌性的五個四級碳中心和一個三級碳中心。目前在優化條件後的鏡像選擇性高達88%,而產率高達72%。
(二)我們開發了一個新方法以合成呋喃香豆素衍伸物和呋喃喹啉酮衍伸物。藉由三苯基磷分別對末端炔酸酯進行MBH反應,隨後再引入醯氯,進行氧醯化反應,整個過程涉及醯基轉移和威悌反應此兩個關鍵步驟,最終得到呋喃香豆素產物。同時可以在沒有金屬的條件下運用一鍋化方式自動建構含有酮官能基的兩個雜環。此類產物結構中的環戊烷融合香豆素延伸物其已知是一個極具有生物活性片段的結構,也可以順利被合成。
(三)延續先前的構想,我們設想額外引入了一組烯烴並含有生物活性結構,以驗證是否可以進行相似的RC反應。使用空氣穩定的三苯基磷對具有羥吲哚骨架的末端炔酸酯進行RC反應、引入醯氯進行氧醯化反應並進行醯基轉移、威悌反應得到螺環環戊烯香豆素融合羟吲哚,起始物上的羟吲哚片段也可以置換成二氫茚二酮和吡唑哢片段。此反應可在無金屬試劑下,運用一鍋化的方式自動建構兩個環,並且可被量化製作,額外的延伸在起始物上引入不同的雜環化合物,像是羥吲哚、二氫茚二酮和吡唑哢這些極具有生物活性片段的結構,也可以得到相對應的產物。較為稀奇的是開環的1,3-雙酮化合物也可以被引入已進行反應。
(四)為了合成出稀少被合成出的特殊吡喃六環產物,我們使用乙烯基環丙烷作為五個原子環化反應之提供者和苯甲醯氯進行反應,以合成六圓雜環產物。我們期望透過磷的加成可得酮型異構物再藉由互變異構化獲得烯醇型異構物,透過苯甲醯氯進行氧醯化反應、鹼去質子化得到葉立德中間體,最後合環並藉由威悌反應得到吡喃六環產物。進行了一系列控制反應探討後,仍舊無法順利得到吡喃六環產物,而是鹵化產物。目前已知在不含鹼的環境中,會傾向生成鹵化產物,但若加入太弱的有機鹼或較強的無機鹼,反應無法進行,目前可知磷試劑必須存在於反應。在未來,持續對鹼性的強弱進行測試,嘗試獲得最初目標產物。

1.An efficient organocatalytic quadruple cascade reaction to construct the trifluoromethyl-spiropyrazole-difuro-indandione skeleton bearing five quaternary stereocenters and one tertiary stereocenters was ubderway un our laborotatory. The cascade reaction was demonstrated via vinylogous Michael addition of 2-arylidene pyrazolone to 2-arylidene indandioneshowing the power of generation the designed caged product from the Michael acceptor of trifluoroacetyl group via an oxa-Michael reaction as the key step. Currently, a few of racemic products and one chiral product have been synthesized.
2.A new method for the construction of functionalized furo[3,2-c]coumarins via MBH-type/acyl-transfer/Wittig reaction is reported. This reaction has a broad substrate scope with terminal alkynoates, and it works under the metal-free condition and easily scaled-up with triphenylphosphine to afford the products in good yields. The reaction is initiated by the chemoselective phosphine addition to the alkynoates, which then generate the zwitterions via MBH-type reaction and O-acylation to construct the betaine intermediates. Then the cleavage of C-O bond resuling in the acyl transfer and O-acylation /cyclization provides another betaine intermediates,which final proceed through the Wittig reaction to furnish the furocoumarins. Further extension of this protocol, by using other internal alkynoates and internal propiolamides successfully, providing the furo[3,2-c]coumarins and furo[3,2-c]quinolinones.
3.Through our previous work on alkynoates, we develop a new starting material extense one more alkene to go through the Rauhut-Currier (RC)-type/acyl transfer/Wittig strategy to construct the spirocyclopenta[c]chromene-indolinones. This protocol was efficient, and it was achieved with a broad substrate scope, metal-free conditions and easily scaled-up with triphenylphosphine to afford the products in good to high yields. This approach features the chemoselective phosphine addition to the alkynoates, which further generates the phosphorus zwitterions via the RC-type reaction, and then undergo O-acylation to form the seven-membered betaine intermediates then through exceptional δ-acylation, the C−O bond cleavage on the seven-membered betaine, and the subsequent Wittig reaction preferentially results in the aforementioned spiro compounds. Further extension of this protocol can change the oxindole to indandione and pyrazolone which are the important skeletons in the nature products.
4.Previously, our lab frequently constructs the five-membered ring and seven-membered ring in phosphine chemistry, but seldom construct six-membered ring. So I want to find a starting material that is a good C5 synthon which can work with acyl chloride to construct the six-membered ring.Then I found that vinylcyclopropane with the donor-acceptor system is a good choice to construct the six-membered ring. When the phosphine add to the vinylcyclopropane it will more prefer on the cyclopropane then get the keto form intermediate and go through the keto-enol tautomerization, the enol-form will do the O-acylation and base deprotonation to get the ylide then cyclization and Wittig reaction to construct the pyran derivatives.But through the reaction we only can get the halogenation product not the pyran product, in the future, we will try our best to figure out the way to get the pyran product.

謝辭 I 摘要 II Abstract VI 表列表 XIV 圖列表 XV 式列表 XIX 縮寫對照表 XXI 第一章 有機不對稱-藉由插烯-麥可/串級反應建構有多個四級碳中心的三氟甲基螺環吡唑哢二呋喃茚二酮 1 1-1前言-吡唑哢的優勢 1 1-1-1 吡唑哢的生物活性 1 1-1-2 吡唑哢在不對稱反應應用 2 1-2 研究動機與實驗設計 4 1-2-1 實驗室過去對二氫茚二酮的不對稱反應的探討 4 1-2-2 實驗設計- 引入COCF3片段 5 1-3 實驗結果與討論 7 1-3-1 外消旋化化合物的取代基效應之探討 7 1-3-2 反應條件的篩選 8 1-3-3 推測的反應機構 16 1-4 結論 17 1-5 未來展望 18 1-6 光譜分析 19 1-7 實驗數據與操作步驟 24 1-7-1 分析儀器 24 1-7-2 實驗操作步驟 25 1-7-3 光譜數據 27 1-7-4 X-ray 單晶繞射數據 41 1-8 參考資料 42 1-9 NMR光譜數據 43 1-10 HPLC chromatograms for chiral and racemic products 64 1-11 Check list 70 第二章 磷化學炔酸酯藉由MBH反應/醯基轉移/威悌反應建構呋喃香豆素 和 磷誘導藉由RC反應/醯基轉移/威悌反應建構螺環香豆素衍伸物 71 2-1 前言-炔酸酯的應用與環化反應 71 2-1-1 炔酸酯的應用 71 2-1-2 炔酸酯在磷化學中的環化反應 73 2-2 磷化學的應用 74 2-2-1 MBH 和 RC 在環化反應的應用 74 2-2-2 Cyclopentane-fused Coumarin的生物活性 77 2-3 MBH 的研究動機 78 2-3-1 MBH 研究動機 78 2-4 MBH 的實驗結果與討論 79 2-4-1 反應條件的篩選 79 2-4-2 取代基效應的探討 81 2-4-3 克級反應 83 2-4-4 控制實驗 83 2-4-5 推測的反應機構 87 2-4-6 結論 88 2-4-7 光譜分析 89 2-4-8 實驗數據與操作步驟 92 2-4-8-1 分析儀器 92 2-4-8-2 實驗操作步驟 93 2-4-8-3 光譜數據 96 2-4-8-4 X-ray 單晶繞射數據 127 2-4-9 參考資料 135 2-4-10 NMR 光譜數據 136 2-4-11 Check list 190 2-5 RC的實驗設計與研究動機 191 2-5-1 RC的研究動機 191 2-5-2 RC的實驗設計 192 2-6 RC的實驗結果與討論 192 2-6-1 反應的條件篩選 192 2-6-2 取代基效應的探討 196 2-6-3 克級反應與延伸應用 199 2-6-4 控制實驗 200 2-6-5 推測的反應機構 202 2-6-6 結論 203 2-6-7 未來展望 204 2-6-8 光譜分析 205 2-6-9 實驗數據與操作手法 213 2-6-9-1 分析儀器 213 2-6-9-2 實驗操作步驟 214 2-6-9-3 光譜數據 217 2-6-9-4 X-ray 單晶繞射數據 251 2-6-10 參考資料 256 2-6-11 NMR 光譜數據 257 2-6-12 Check list 302 第三章 磷化學- 磷誘導乙烯基環丙烷開環/氧醯化/威悌反應建構3-吡喃甲酮衍伸物 303 3-1 實驗室過去的雜環合成 303 3-2 研究動機與實驗設計 305 3-2-1 乙烯基環丙烷在予體-受體系統的應用 305 3-2-2 乙烯基環丙烷在磷化學的應用 307 3-2-3 實驗設計-用DFT驗證 308 3-3 實驗結果與討論 309 3-3-1 反應條件的篩選 309 3-3-2 取代基效應的探討 312 3-3-3 控制實驗 313 3-3-4 推測的反應機構 314 3-4 結論 316 3-5 未來展望 317 3-6 光譜分析 318 3-7 實驗數據與操作步驟 321 3-7-1 分析儀器 321 3-7-2 實驗操作步驟 322 3-7-3 光譜數據 323 3-7-4 X-ray 單晶繞射數據 325 3-8 參考資料 326 3-9 NMR 光譜數據 327 3-10 Check list 328

1. Liu, S.; Bao, X.; Wang, B. Chem. Commun., 2018, 54, 11515-11529.
2. Kumar, V.; Kaur, K.; Gupta, G. K.; Sharma, A. K. Eur. J.Med. Chem. 2013, 69, 735-753.
3. Chauhan, P.; Mahajan, S.; Kaya, U.; Peuronen, A.; Rissanen, K.; Enders, D. J. Org. Chem. 2017, 82, 7050−7058.
4. Khairnar, P. V.; Su, Y.-H.; Edukondalu, A.; Lin, W. J. Org. Chem. 2021, 86, 12326−12335.
5. Carceller-Ferrer, L.; Vila, C.; Blay, G.; Muñoz, M. C.; Pedro, J. R. Org. Lett. 2021, 23, 7391−7395.
6. Sun, B.-B.; Zhang, J.-Q.; Chen, J.-B.; Fan, W.-T.; Yu, J.-Q.; Hu, J.-M.; Wang, X.-W. Org. Chem. Front. 2019, 6, 1842–1857.
7. Möhlmann, L.; Chang, G.-H.; Reddy, G. M.; Lee, C.-J.; Lin, W. Org. Lett. 2016, 18, 688−691.
8. Chen, Y.-R.; Ganapuram, M. R.; Hsieh, K.-H.; Chen, K.-H.; Karanam, P.; Vagh, S. S.; Liou, Y.-C.; Lin, W. Chem. Commun., 2018, 54, 12702-12705.
9. Yang, S.-M.; Ganapuram, M. R.; Wang, T.-P.; Yeh, Y-S.; Wang, M.; Lin, W. Chem. Commun., 2017, 53, 7649-7652.
10. Yang, S.-M.; Karanam, P.; Wang, M.; Jang, Y.-J.; Yeh, Y.-S.; Tseng, P.-Y.; Ganapuram, M. R.; Liou, Y.-C.; Lin, W. Chem. Commun., 2019, 55, 1398-1401.
11. Lee, C.-J.; Sheu, C.-N.; Tsai, C.-C.; Wu, Z.-Z.; Lin, W. Chem. Commun., 2014, 50, 5304-5306.
12. Zheng, J.; Li, P.; Gu, M.; Lin, A.; Yao, H. Org. Lett. 2017, 19, 2829–2832.
13. Shen, S.-J.; Du, X.-L.; Xu, X.-L.; Wu, Y.-H.; Zhao, M.-G.; Liang, J.-Y. RSC Adv., 2019, 9, 34912-34925.
14. Aparece, M. D.; Vadola, P. A. Org. Lett. 2014, 16, 6008−6011.
15. Zeng, Y.-F.; Tan, D.-H.; Chen, Y.; Lv, W.-X.; Liu, X.-G.; Li, Q.; Wang, H. Org. Chem. Front., 2015, 2, 1511–1515.
16. Feng, S.; Xie, X.; Zhang, W.; Liu, L.; Zhong, Z.; Xu, D.; She, X. Org. Lett. 2016, 18, 3846–3849.
17. Gao, W.-C.; Liu, T.; Zhang, B.; Li, X.; Wei, W.-L.; Liu, Q.; Tian, J.; Chang, H.-H. J. Org. Chem. 2016, 81, 11297–11304.
18. Mbofana, C. T.; Miller, S. J. ACS Catal. 2014, 4, 3671−3674.
19. Wang, Y.-H.; Zhao, Z.-N.; Kalita, S. J.; Huang, Y.-Y. Org. Lett. 2021, 23, 8147−8152.
20. Morita, K.; Z. Suzuki, H. Hirose. Bull. Chem. Soc. Jpn. 1968, 41, 2815.
21. Baylis, A. B.; Hillman, M. E. D. German Patent 2155113, 1972
22. Rauhut, M. M.; Currier, H. (American Cyanamid Co.), U.S. Patent 1963, 307499.
23. Yuan, W.; Zheng, H.-F.; Yu, Z.-H.; Tang, Z.-L.; Shi, D.-Q. Eur. J. Org. Chem. 2014, 2014, 583–591.
24. Zheng, Y.; Wang, Z.-W.; Cheng, W.-S.; Xie, Z.-Z.; He, X.-C.; Chen, Y.-S.; Chen, K.; Xiang, H.-Y.; Chen, X.-Q.; Yang, H. J. Org. Chem. 2022, 87, 974–984.
25. Scanes, R. J. H.; Grossmann, O.; Grossmann, A.; Spring, D. R. Org. Lett. 2015, 17, 2462−2465.
26. Zhang, X.-Z.; Gan, K.-J.; Liu, X.-X.; Deng, Y.-H.; Wang, F.-X.; Yu, K.-Y.; Zhang, J.; Fan, C.-A. Org. Lett. 2017, 19, 3207−3210.
27. Ng, D.; Yang, Z.; Garcia-Garibay, M. A. Org. Lett., 2004, 6, 645–647.
28. McLean , M.; Dutton, M. F. Pharmacol. Ther., 1995, 65, 163–192.
29. Deng, Z.-X.; Zheng, Y.; Xie, Z.-Z.; Gao, Y.-H.; Xiao, J.-A.; Xie, S.-Q.; Xiang, H.-Y.; Chen, X.-Q.; Yang, H. Org. Lett. 2020, 22, 488−492.
30. Vagh, S. S.; Hou, B.-J.; Edukondalu, A.; Wang, P.-C.; Lin, W. Org. Lett. 2021, 23, 842-846.
31. Deng, Z.-X.; Zheng, Y.; Xie, Z.-Z.; Gao, Y.-H.; Xiao, J.-A.; Xie, S.-Q.; Xiang, H.-Y.; Chen, X.-Q.; Yang, H. Org. Lett. 2020, 22, 488492.
32. Zhang, J.; Han, X.; Lu, X. Synlett 2015, 26, 17441748.
33. Henry, C. E.; Kwon, O. Org. Lett., 2007, 9, 3069-3072.
34. Vagh, S. S.; Hou, B.-J.; Edukondalu, A.; Wang, P.-C.; Lin, W. Org. Lett. 2021, 23, 842−846.
35. Vagh, S. S.; Hou, B.-J.; Edukondalu, A.; Wang, P.-C.; Chen, Y.-R.; Lin, W. Adv. Synth. Catal. 2021, 363, 5429– 5435.
36. Zhang, L.; Ren, W.; Wang, X.; Zhang, J.; Liu, J.; Zhao, L.; Zhang, X. Eur. J. Med. Chem. 2017, 126, 1071–1082 .
37. Vagh, S. S.; Hou, B.-J.; Edukondalu, A.; Wang, P.-C.; Lin, W. Org. Lett. 2021, 23, 842–846.
38. Yu, J.-K.; Chien, H.-W.; Lin, Y.-J.; Karanam, P.; Chen, Y.-H.; Lin, W. Chem. Commun. 2018, 54, 9921–9924.
39. Ema, M.; Xu, Y.; Gehrke, S.; Wagner, G. K. Med. Chem. Commun. 2018, 9, 131–137.
40. Lee, Y.-T.; Lee, Y.-T.; Lee, C.-J.; Sheu, C.-N.; Lin, B.-Y.; Wang, J.-H.; Lin, W. Org. Biomol. Chem. 2013, 11, 5156–5161.
41. Syu, S.; Lee, Y.-T.; Jang, Y.-J.; Lin, W. Org. Lett. 2011, 13, 2970-2973.
42. Fan, Y.-S.; Das, U.; Hsiao, M.-Y.; Liu, M.-S.; Lin, W. J. Org. Chem. 2014, 79, 11567-11582.
43. Tsai, Y.-L.; Fan, Y.-S.; Lee, C.-J.; Huang, C.-H.; Das, U.; Lin, W. Chem. Commun.2013, 49, 10266-10268.
44. Khairnar, P. V.; Wu, C.-Y.; Lin, Y.-F.; Edukondalu, A.; Chen, Y.-R.; Lin, W. Org. Lett. 2020, 22, 4760−4765.
45. Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem. Int. Ed. 2014, 53, 5504 – 5523.
46. Moran, J.; Smith, A. G.; Carris, R. M.; Johnson, J. S.; Krische, M. J. J. Am. Chem. Soc. 2011, 133, 18618–18621.
47. Zhang, J.; Tang, Y.; Wei, W.; Wu, Y.; Li, Y.; Zhang, J.; Zheng, Y.; Xu, S. Org. Lett. 2017, 19, 3043−3046.
48. Young, I. S.; Kerr, M. A. Angew. Chem. Int. Ed. 2003, 42, 3023 – 3026.
49. Wu, J.; Tang, Y.; Wei, W.; Wu, Y.; Li, Y.; Zhang, J.; Zheng, Y.; Xu, S. Angew. Chem. Int. Ed. 2018, 57, 6284 –6288.
50. Wu, Y.; Li, M.; Jin, L.; Zhao, X. ACS Omega 2020, 5, 2957−2966.
51. Xia, Y.; Lin, L.; Chang, F.; Liao, Y.; Liu, X.; Feng, X. Angew. Chem. Int. Ed. 2016, 55, 12228–12232.

無法下載圖示 本全文未授權公開
QR CODE