研究生: |
陳玢璘 FL Chen |
---|---|
論文名稱: |
第二及十七型脊髓小腦共濟失調症之分子檢測及SCA17 TBP擴增淋巴細胞的氧化壓力研究 Genetic testing of spinocerebellar ataxia types 2 and 17 and oxidative stress study of lymphoblastoid cells with SCA17 TBP expansion |
指導教授: |
李桂楨
Lee, Guey-Jen |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 68 |
中文關鍵詞: | 氧化壓力 、神經退化疾病 、小腦萎縮症 、淋巴細胞 、脊髓小腦共濟失調症 |
英文關鍵詞: | Oxidative Stress, SCA17, spinocerebellar ataxia, neurodegeneration, lymphoblastoid, CAG, TBP |
論文種類: | 學術論文 |
相關次數: | 點閱:429 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
脊髓小腦共濟失調症(SCA)為一群神經退化性疾病,其主要特徵為小腦功能異常,有時也會出現其他神經異常情況,其中第二型及十七型SCA (SCA2、SCA17)和蛋白轉譯區CAG三酸重複擴增相關。SCA17致病基因位於染色體6q27位置,其產物為轉譯起始因子TATA binding protein (TBP)。本研究利用基因型分析(genotyping)技術,首先分析台灣地區包括正常人族群、運動失調症患者、PD患者、AD患者、精神病患者及其他神經疾病族群SCA2、SCA17基因CAG重複範圍,結果於SCA2中發現1個位於正常及擴增範圍邊界的對偶基因(32個重複),及4個擴增的致病對偶基因(35、40、48及49重複),於SCA17中則未發現擴增的致病對偶基因,但觀察到5個邊界的對偶基因(44~46重複)。為了了解致病機轉,本研究建立了正常人及SCA17病人的EBV轉型淋巴細胞,並架構了包含 3~61 CAG三核重複的 TBP cDNA,表現於SK-N-SK細胞,利用氧化劑t-butylhydroperoxide (TBH)來檢測這些表現正常與擴增CAG三核重複的細胞對氧化壓力的忍受度。細胞存活及SOD活性定量結果顯示,與表現正常TBP基因的細胞相較,表現擴增TBP基因的細胞對於氧化壓力的忍受度會下降。利用定量蛋白體學方法,比較正常人及SCA17病人淋巴細胞的蛋白表現,初步結果發現一些熱休克蛋白及氧化壓力相關蛋白表現的變異。
Abstract
Spinocerebellar ataxias (SCAs) are a group of neurodegenerative disorders characterized by cerebellar dysfunction alone or in combination with other neurological abnormalities. Among them, both SCA2 and SCA17 were caused by the expansions of coded CAG trinucleotide repeats. The chromosome 6q27 SCA17 gene encodes a transcription initiation factor TATA-box binding protein (TBP). In this study, SCA2 and SCA17 genotyping was performed to set up the repeat size range in Taiwanese control subjects and in patients with ataxia, dementia, PD, schizophrenia, and other neurological disorders. For SCA2, one borderline (32 repeats) and four pathogenic (35, 40, 48, and 49 repeats) alleles were observed in patients group. For SCA17, no pathogenic expansion was found, but five borderline alleles (44~46 repeats) were found in patients group. To investigate the pathogenic mechanisms underlying the disease, EBV-transformed lymphoblastoid cells from controls and patients with SCA17 TBP expansions were established. Constructs with 3~61 CAG repeat-containing TBP cDNA were also prepared and expressed in SK-N-SK cells to assess the oxidative tolerance of cells upon exposure to t-butylhydroperoxide (TBH). By quantifying the cell viability and the amount of SOD upon TBH treatment, the cells expressed expanded TBP were shown to be more vulnerable to TBH than the cells expressed normal TBP. Quantitative proteomics was used to compare the overall protein expressions among lymphoblastoid cells from SCA17 patients and normal controls. So far, some heat shock factors and oxidative stress related proteins have been suggested from the peer results.
References
Adams, C., Starkman, S. and Pulst, S.M. (1997). Clinical and molecular analysis of a pedigree of southern Italian ancestry with spinocerebellar ataxia type 2. Neurology. 49:1163-6.
Aksenov, M., Aksenova, M., Butterfield, D.A. et al. (2000). Oxidative modification of creatine kinase BB in Alzheimer's disease brain. J Neurochem. 74:2520-7.
Babovic-Vuksanovic, D., Snow, K., Patterson, M.C. et al. (1998). Spinocerebellar ataxia type 2 (SCA 2) in an infant with extreme CAG repeat expansion. Am J Med Genet. 79:383-7.
Bogdanov M.B., Andreassen, O.A., Dedeoglu, A. et al. (2001). Increased oxidative damage to DNA in a transgenic mouse model of Huntington's disease. J Neurochem. 79:1246-49.
Bok, K.S., Rhim, H., Yoo, Y.D. et al. (1999). Expanded polyglutamine tract itself induces cell death in cultured cells. Mol. Cells 9:398-402.
Bowen, T., Guy, C., Speight, G.. et al. (1996). Expansion of 50 CAG/CTG repeats excluded in schizophrenia by application of a highly efficient approach using repeat expansion detection and a PCR screening set. Am J Hum Genet. 59:912-7.
Boyd-Kimball, D., Sultana, R., Poon, H.F. et al. (2005). Proteomic identification of proteins specifically oxidized by intracerebral injection of amyloid beta-peptide (1-42) into rat brain: implications for Alzheimer's disease. Neurosci. 132:313-24.
Browne, S.E., Ferrante, R.J. and Beal, M.F. (1999). Oxidative stress in Huntington's disease. Brain Pathol. 9:147-63.
Brusco, A., Gellera, C., Cagnoli, C. et al. (2004). Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families. Arch Neurol. 61:727-33.
Cancel, G., Durr, A., Didierjean, O. et al. (1997). Molecular and clinical correlations in spinocerebellar ataxia 2: a study of 32 families. Hum Mol Genet. 6:709-15.
Castegna A. Aksenov M. Aksenova M. et al. (2002a). Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Rad Biol & Med. 33:562-71.
Castegna, A., Aksenov, M., Thongboonkerd, V. et al. (2002b). Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part II: dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J Neurochem. 82:1524-32.
Chen, C.M., Lane, H.Y., Wu, Y.R. et al. (2005). Expanded trinucleotide repeats in the TBP/SCA17 gene mapped to chromosome 6q27 are associated with schizophrenia. Schizophr Res. 78:131-6.
Cheon, M.S., Fountoulakis, M., Cairns, N.J. et al. (2001). Decreased protein levels of stathmin in adult brains with Down syndrome and Alzheimer's disease. J Neural Transmi. Suppl. 61:281-8.
Chung, T.F., Sipe, J.D., McKee, A. et al. (2000). Serum amyloid A in Alzheimer's disease brain is predominantly localized to myelin sheaths and axonal membrane. Amyloid. 7:105-10.
Cummings, C.J. and Zoghbi, HY. (2000). Fourteen and counting: unraveling trinucleotide repeat diseases. Hum. Mol. Genet. 9:909-16.
David, G., Abbas, N., Stevanin, G. et al. (1997). Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet. 17: 65-70.
Davidsson, P. and Sjogren, M. (2005). The use of proteomics in biomarker discovery in neurodegenerative diseases. Disea Mark. 21:81-92.
De Michele, G., Maltecca, F., Carella, M. et al. (2003). Dementia, ataxia, extrapyramidal features, and epilepsy: phenotype spectrum in two Italian families with spinocerebellar ataxia type 17. Neurol Sci 24:166-7.
Durr, A., Brice, A., Lepage-Lezin, A. et al. (1995). Autosomal dominant cerebellar ataxia type I linked to chromosome 12q (SCA2: spinocerebellar ataxia type 2). Clin. Neurosci. 3:12-6
Fernandez, M., McClain, M.E., Martinez, R.A. et al. (2000). Late-onset SCA2: 33 CAG repeats are sufficient to cause disease. Neurology. 55:569-72.
Filla, A., De Michele, G., Santoro, L. et al. (1999). Title Spinocerebellar ataxia type 2 in southern Italy: a clinical and molecular study of 30 families. J Neurol. 246:467-71.
Filla, A., Mariotti, C., Caruso, G. et al. (2000). Relative frequencies of CAG expansions in spinocerebellar ataxia and dentatorubropallidoluysian atrophy in 116 Italian families. Euro Neurol. 44:31-6.
Fujigasaki, H., Martin, J.J., De Deyn, P.P. et al. (2001). CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia. Brain, 124:1939-47.
Furtado, S., Payami, H., Lockhart, P.J. et al. (2004). Profile of families with parkinsonism-predominant spinocerebellar ataxia type 2 (SCA2). Mov Disor. 19:622-9.
Geschwind, D.H., Perlman, S., Figueroa, C.P. et al. (1997). The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Amer J Hum Genet. 60:842-50.
Gispert, S., Twells, R., Orozco, G. et al. (1993). Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q23-24.1. Nature Genet. 4:295-9.
Giuffrida, S., Saponara, R., Trovato Salinaro, A. et al. (1999). Identification of SCA2 mutation in cases of spinocerebellar ataxia with no family history in mid-eastern Sicily. Ital J Neurol Sci. 20:217-21.
Giunti, P., Sabbadini, G., Sweeney, M.G. et al. (1998). The role of the SCA2 trinucleotide repeat expansion in 89 autosomal dominant cerebellar ataxia families. Frequency, clinical and genetic correlates. Brain. 121:459-67.
Gomez, J.A., Majumder, P., Nagarajan, U.M. et al. (2005). X box-like sequences in the MHC class II region maintain regulatory function. J Immunol. 175:1030-40.
Gong, W.J. and Golic, K.G. (2005). Loss of Hsp70 in Drosophila is pleiotropic, with effects on thermotolerance, recovery from heat shock, and neurodegeneration. Genetics. Oct 3 [Epub ahead of print].
Gostout, B., Liu, Q. and Sommer, S.S. (1993). "Cryptic" repeating triplets of purines and pyrimidines (cRRY(i)) are frequent and polymorphic: analysis of coding cRRY(i) in the proopiomelanocortin (POMC) and TATA-binding protein (TBP) genes. Am. J. Hum Genet. 52:1182-90.
Gwinn-Hardy, K., Chen, J.Y., Liu, H.C. et al. (2000). Spinocerebellar ataxia type 2 with parkinsonism in ethnic Chinese. Neurology. 55:800-5.
Hernandez, D., Hanson, M., Singleton, A. et al. (2003). Mutation at the SCA17 locus is not a common cause of parkinsonism. Parkinsonism Relat Disord. 9:317-20.
Holmes, S.E., O'Hearn, E.E., McInnis, M.G. et al. (1999). Expansion of a novel CAG trinucleotide repeat in the 5' region of PPP2R2B is associated with SCA12. Nat Genet. 23:391-2.
Hsieh, M., Li, SY., Tsai, C.J. et al. (1999). Identification of five spinocerebellar ataxia type 2 pedigrees in patients with autosomal dominant cerebellar ataxia in Taiwan. Acta Neurol Scand. 100:189-94.
Henderson, E., Miller, G., Robinson, J. et al. (1977). Efficiency of transformation of lymphocytes by Epstein-Barr virus. Virology. 76:152-63.
Imbert, G., Trottier, Y., Beckmann, J. et al. (1994). The gene for the TATA binding protein (TBP) that contains a highly polymorphic protein coding CAG repeat maps to 6q27. Genomics 21:667-8.
Imbert, G., Saudou, F., Yvert, G.. et al. (1996). Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nature Genet. 14:285-91.
Jarrett, S.G. and Boulton, M.E. (2005). Antioxidant up-regulation and increased nuclear DNA protection play key roles in adaptation to oxidative stress in epithelial cells. Free Rad Biol & Med. 38:1382-1391.
Jiang, H., Tang, B.S., Xu, B. et al. (2005). Frequency analysis of autosomal dominant spinocerebellar ataxias in mainland Chinese patients and clinical and molecular characterization of spinocerebellar ataxia type 6. Chin Med J. 118:837-43.
Johnson, M.D., Yu, L.R., Conrads, T.P. et al. (2005). The proteomics of neurodegeneration. Amer J PharmacoGenom. 5:259-70.
Jones, A.L., Middle, F., Guy, C. et al. (1997). No evidence for expanded polyglutamine sequences in bipolar disorder and schizophrenia. Mol Psychiatry. 2:478-82.
Kao, C.C., Lieberman, P.M., Schmidt, M.C. et al. (1990). Cloning of a transcriptionally active human TATA binding factor. Science 248:1646-50.
Kawaguchi, Y., Okamoto, T., Taniwaki, M., et al. (1994). CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet. 8:221-8.
Kim, S.J., Kim, T.S., Hong, S. et al. (2003). Oxidative stimuli affect polyglutamine aggregation and cell death in human mutant ataxin-1-expressing cells. Neurosci Lett. 348:21-4.
Kim, D.H., Langlois, M.A., Lee, K.B. et al. (2005). HnRNP H inhibits nuclear export of mRNA containing expanded CUG repeats and a distal branch point sequence. Nucleic Acids Res. 33:3866-74.
Koide, R., Ikeuchi, T., Onodera, et al. (1994). Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet. 6:9-13.
Koide, R., Kobayashi, S., Shimohata, T. et al. (1999). A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum. Mol. Genet.. 8:2047-53.
Koob, M.D., Moseley, M.L., Schut, L.J. et al. (1999). An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet. 21:379-84.
Kouskoff,V., Mantovani, R.M., Candeias, S.M., et al. (1991). NF-X, a transcription factor implicated in MHC class II gene regulation. J Immunol. 146:3197-204.
Lee, W.Y., Jin, D.K., Oh, M.R. et al. (2003). Frequency analysis and clinical characterization of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Korean patients. Arch Neurol. 60:858-63.
Leggo, J., Dalton, A., Morrison, P.J. et al. (1997). Analysis of spinocerebellar ataxia types 1, 2, 3, and 6, dentatorubral-pallidoluysian atrophy, and Friedreich's ataxia genes in spinocerebellar ataxia patients in the UK. J Med Genet. 34:982-5.
Lii, C.K. and Hung, C.N. (1997). Protein thiol modifications of human red blood cells treated with t-butyl hydroperoxide. Biochim Biophys Acta. 1336:147-56.
Lu, C.S., Wu Chou, Y.H., Kuo, P.C. et al. (2004). The parkinsonian phenotype of spinocerebellar ataxia type 2. Arch Neurol. 61:35-8.
Maltecca, F., Filla, A., Castaldo, I. et al. (2003). Intergenerational instability and marked anticipation in SCA-17. Neurology. 61:1441-3.
Maruyama, H., Izumi, Y., Morino, H. et al. (2002). Difference in disease-free survival curve and regional distribution according to subtype of spinocerebellar ataxia: a study of 1,286 Japanese patients. Amer J Med Genet. 114:578-83.
Matsuura, T., Yamagata, T., Burgess, D.L. et al. (2000). Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet. 26:191-4.
Mavelli, I., Rigo, A., Federico, R. et al. (1982). Superoxide dismutase, glutathione peroxidase and catalase in developing rat brain. Biochem. J. 204:535–540.
Miller, V.M., Nelson, R.F., Gouvion, C.M. et al. (2005). CHIP suppresses polyglutamine aggregation and toxicity in vitro and in vivo. J Neurosci. 25:9152-61.
Muchowski, P.J., Schaffar, G., Sittler, A. et al. (2000). Hsp70 and Hsp40 inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl. Acad. Sci. U.S.A. 97:7841-6.
McCord, J.M. and Edeas, M.A. (2005). SOD, oxidative stress and human pathologies: a brief history and a future vision. Biomed & Pharmacother. 59:139-142.
Nakamura, K., Jeong, S.Y., Uchihara, T. et al. (2001). SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum. Mol. Genet.. 10:1441-8.
Nicolls, M.R., D'Antonio, J.M., Hutton, J.C., et al. (2003). Proteomics as a tool for discovery: proteins implicated in Alzheimer's disease are highly expressed in normal pancreatic islets. J Proteome Res. 2:199-205.
Orr, H.T., Chung, M.Y., Banfi, S. et al. (1993). Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 4:221-6.
Pamplona, R., Dalfo, E., Ayala, V., et al. (2005). Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets. J Biol Chem. 280:21522-30.
Pareyson, D., Gellera, C., Castellotti, B. et al. (1999). Clinical and molecular studies of 73 Italian families with autosomal dominant cerebellar ataxia type I: SCA1 and SCA2 are the most common genotypes. J Neurol. 246:389-93.
Payami, H., Nutt, J., Gancher, S. et al. (2002). SCA2 may present as levodopa-responsive parkinsonism. Mov Disor. 18:425-9.
Perez, M.K., Paulson, H.L., Pendse, S.J. et al. (1998). Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J Cell Biol. 143:1457-70.
Prez-Severiano, F., Rios, C. and Segovia, J. (2000). Striatal oxidative damage parallels the expression of a neurological phenotype in mice transgenic for the mutation of Huntington's disease. Brain Res. 862:234-7.
Pigeolet, E., Corbisier, P., Houbion, A. et al. (1990). Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals. Mech Ageing Dev. 51:283-97.
Potaman, V.N., Bissler, J.J., Hashem, V.I. et al. (2003). Unpaired structures in SCA10 (ATTCT)n.(AGAAT)n repeats. J Mol Biol. 326:1095-111.
Pulst, S.M., Nechiporuk, A., Nechiporuk, T. et al. (1996). Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 14:269-76.
Ragothaman, M., Sarangmath, N., Chaudhary, S. et al. (2004). Complex phenotypes in an Indian family with homozygous SCA2 mutations. Ann Neurol. 55:130-3.
Reid, S.J., Rees, M.I., van Roon-Mom, W.M. et al. (2003). Molecular investigation of TBP allele length: a SCA17 cellular model and population study. Neurobiol Dis. 13:37-45.
Riess, O., Laccone, F.A., Gispert, S. et al. (1997). SCA2 trinucleotide expansion in German SCA patients. Neurogenetics. 1:59-64.
Rolfs, A., Koeppen, A.H., Bauer, I. et al. (2003). Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol 54:367-75.
Rubinsztein, D.C., Leggo, J., Crow, T.J. et al. 1996. Analysis of polyglutamine-coding repeats in the TATA-binding protein in different human populations and in patients with schizophrenia and bipolar affective disorder. Am J Med Genet 67:495-8.
Rufa, A., Dotti, M.T., Galli, L. et al. (2002). Spinocerebellar ataxia type 2 (SCA2) associated with retinal pigmentary degeneration. Eur Neurol. 47:128-9.
Ryu, H., Lee, J., Olofsson, B.A. et al. (2003). Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway. Proc Natl Acad Sci USA. 100:4281-6.
Saleem, Q., Choudhry, S., Mukerji, M. et al. (2000). Molecular analysis of autosomal dominant hereditary ataxias in the Indian population: high frequency of SCA2 and evidence for a common founder mutation. Hum Genet. 106:179-87.
Sanpei, K., Takano, H., Igarashi, S. et al. (1996). Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet. 14:277-84.
Santamaria, A., Salvatierra-Sanchez, R., Vazquez-Roman, B. et al. (2003). Protective effects of the antioxidant selenium on quinolinic acid-induced neurotoxicity in rats: in vitro and invivo studies. J Neurochem. 86:479-88.
Sasaki, H., Fukazawa, T., Wakisaka, A. et al. (1996). Central phenotype and related varieties of spinocerebellar ataxia 2 (SCA2): a clinical and genetic study with a pedigree in the Japanese. J Neurol Sci. 144:176-81.
Sasaki, H., Wakisaka, A., Sanpei, K. et al. (1998). Phenotype variation correlates with CAG repeat length in SCA2--a study of 28 Japanese patients. J Neurol Sci. 159:202-8.
Sasaki, H., Yabe, I., Yamashita, I. et al. (2000). Prevalence of triplet repeat expansion in ataxia patients from Hokkaido, the northernmost island of Japan. J Neurol Sci. 175:45-51.
Schols L. Gispert S. Vorgerd M. et al. (1997). Spinocerebellar ataxia type 2. Genotype and phenotype in German kindreds. Arch Neurol. 54:1073-80.
Schreiber, B.M., Veverbrants, M., Fine, R.E. et al. (1999). Apolipoprotein serum amyloid A down-regulates smooth-muscle cell lipid biosynthesis. Biochem J. 344:7-13.
Shan, D.E., Soong, B.W., Sun, C.M. et al. (2001). Spinocerebellar ataxia type 2 presenting as familial levodopa-responsive parkinsonism. Ann Neurol. 50:812-5.
Shan, D.E., Liu, R.S., Sun, C.M. et al. (2004). Presence of spinocerebellar ataxia type 2 gene mutation in a patient with apparently sporadic Parkinson's disease: clinical implications. Mov Disor. 19:1357-60.
Silveira, I., Manaia, A., Melki, J. et al. (1993). Machado-Joseph disease is genetically different from Holguin dominant ataxia (SCA2). Genomics. 17:556-9.
Silveira, I., Coutinho, P., Maciel, P. et al. (1998). Analysis of SCA1, DRPLA, MJD, SCA2, and SCA6 CAG repeats in 48 Portuguese ataxia families. Amer. J. Med. Genet. 81:134-8.
Silveira, I., Miranda, C., Guimaraes, L. et al. (2002). Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locus. Arch Neurol 59:623-9.
Simon-Sanchez, J., Hanson, M., Singleton, A. et al. (2005). Analysis of SCA-2 and SCA-3 repeats in Parkinsonism: evidence of SCA-2 expansion in a family with autosomal dominant Parkinson's disease. Neurosci Lett. 382:191-4.
Stevanin, G., Fujigasaki, H., Lebre, A.S. et al. (2003). Huntington's disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain. 126:1599-603.
Strey, C.W., Spellman, D., Stieber, A. et al. (2004). Dysregulation of stathmin, a microtubule-destabilizing protein, and up-regulation of Hsp25, Hsp27, and the antioxidant peroxiredoxin 6 in a mouse model of familial amyotrophic lateral sclerosis. Amer J Pathol. 165:1701-18.
Sugden, B. and Mark, W. (1977). Clonal transformation of adult human leukocytes by Epstein-Barr virus. J Virol. 23:503-8.
Tang, B., Liu, C., Shen, L. et al. (2000). Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds. Arch Neurol. 57:540-4.
Tsai, H.F., Liu, C.S., Leu, T.M. et al. (2004). Analysis of trinucleotide repeats in different SCA loci in spinocerebellar ataxia patients and in normal population of Taiwan. Acta Neurol Scand. 109:355-60.
Tsai, H.F., Lin, S.J., Li, C. et al. (2005). Decreased expression of Hsp27 and Hsp70 in transformed lymphoblastoid cells from patients with spinocerebellar ataxia type 7. Biochem & Biophy Res Commu. 334:1279-86
Tsuji, T., Shiozaki, A., Kohno, R. et al. (2002). Proteomic profiling and neurodegeneration in Alzheimer's disease. Neurochem Resear. 27:1245-53.
Tsutsumi, T., Holmes, S.E., McInnis, M.G. et al. (2004). Novel CAG/CTG repeat expansion mutations do not contribute to the genetic risk for most cases of bipolar disorder or schizophrenia. Am J Med Genet. (Neuropsychiatr. Genet.) 124:15-9.
Vacher, C., Garcia-Oroz, L. and Rubinsztein, D.C. (2005). Overexpression of yeast hsp104 reduces polyglutamine aggregation and prolongs survival of a transgenic mouse model of Huntington's disease. Hum Mol Genet. 14:3425-33.
van Roon-Mom, W.M., Reid, S.J., Faull, R.L. et al. (2005). TATA-binding protein in neurodegenerative disease. Neurosci. 133:863-72.
Velazquez-Perez, L., Seifried, C., Santos-Falcon, N. et al. (2004). Saccade velocity is controlled by polyglutamine size in spinocerebellar ataxia 2. Ann Neurol. 56:444-7.
Wen, F.C., Li, Y.H., Tsai, H.F. et al. (2003). Down-regulation of heat shock protein 27 in neuronal cells and non-neuronal cells expressing mutant ataxin-3. FEBS Lett. 546:307-14.
Wen, J.J. and Garg, N. (2004). Oxidative modification of mitochondrial respiratory complexes in response to the stress of Trypanosoma cruzi infection. Free Radic Biol Med. 37:2072-81.
Wilkins, A., Brown, J.M. and Barker, R.A. (2004). SCA2 presenting as levodopa-responsive parkinsonism in a young patient from the United Kingdom: a case report. Mov Disor. 19:593-5.
Wu, Y.R., Lin, H.Y., Chen, C.M. et al. (2004). Genetic testing in spinocerebellar ataxia in Taiwan: expansions of trinucleotide repeats in SCA8 and SCA17 are associated with typical Parkinson's disease. Clin. Genet. 65:209-14.
Wu, Y.R., Fung, H.C., Lee-Chen, G.J. et al. (2005). Analysis of polyglutamine-coding repeats in the TATA-binding protein in different neurodegenerative diseases. J Neural Transm. 112:539-46.
Wyttenbach, A., Sauvageot, O., Carmichael, J. et al. (2002). Heat shock protein 27 prevents cellular polyglutamine tocixity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet. 11:1137-51.
Yazawa, I., Nukina, N. and Kanazawa, I. (1996). Characterization of dentatorubral-pallidoluysian atrophy proteins using two-dimensional electrophoretic analysis. Brain Resear. 732:154-8.
Zhou, Y.X., Wang, G.X., Tang, B.S. et al. (1998). Spinocerebellar ataxia type 2 in China: molecular analysis and genotype-phenotype correlation in nine families. Neurology. 51:595-8.
Zhou, Y., Gu, G.., Goodlett, D.R. et al. (2004). Analysis of alpha-synuclein-associated proteins by quantitative proteomics. J Biol Chem. 279:39155-64.
Zhuchenko, O., Bailey, J., Bonnen, P. et al. (1997). Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet. 15:62-9.
Zhlke, C., Hellenbroich, Y., Dalski, A. et al, (2001). Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. Eur. J. Hum. Genet. 9:160-164.
Zuhlke, C., Gehlken, U., Hellenbroich, Y. et al. (2003). Phenotypical variability of expanded alleles in the TATA-binding protein gene. Reduced penetrance in SCA17? J Neurol. 250:161-3.