研究生: |
陳瑩 Chen, Ying |
---|---|
論文名稱: |
以氣相層析圖及拉曼光譜圖之圖譜特徵在模式識別法下進行油品快篩的研究 Rapid screening of oils by pattern recognition of spectral features obtained by GC/MS and Raman spectrometry |
指導教授: |
林震煌
Lin, Cheng-Huang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 模式識別 、氣相層析質譜儀 、拉曼光譜 、LabVIEW |
英文關鍵詞: | pattern recognition, GC/MS, Raman, LabVIEW |
DOI URL: | https://doi.org/10.6345/NTNU202204454 |
論文種類: | 學術論文 |
相關次數: | 點閱:145 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以質譜技術與拉曼光譜為基礎,使用 LabVIEW (Laboratory Virtual Instrumentation Engineering Workbench) 電腦語言程式,以模式識別 (pattern recognition) 的方法,成功開發了識別相似度的程式,可用來研究油品安全及摻偽快速篩選的判讀。藉由計算標準樣品和參考樣品之間的交叉相關係數 (cross correlation factor , CCF) 來評估相似度的值。程式中定義兩組圖譜的相似度, A 圖譜為標準品, B 圖譜為對照圖,值會在 100% 到 0% 之間。當標準樣品的圖譜特徵和參考樣品相似時, CFF 的值會接近1。當計算相同的兩圖譜的 CFF 值時會得到1;相反的,當兩樣品的圖譜特徵完全不同時,會得到接近0的值。也就是說,當 (A⋂B)/(A⋃B)=1 時,相似度為 100% ;當 (A⋂B)/(A⋃B)=0 時,相似度為 0% 。 CFF 是由個人電腦和用 LabVIEW 所寫出來的程式所計算得到。並可將此程式應用到層析圖譜及拉曼光譜上。以 Florihana 野生高地真正薰衣草香精油的氣相層析圖為標準圖譜,比對市售6種香精油在同條件下的氣相層析圖,相似度在 30% 到 85% 之間。此外,以拉曼光譜測量各種市售橄欖油,使用相同程式進行相似度的評估。選擇日清純橄欖油作為標準品,和其餘4種市售橄欖油做比對。發現高價格樣品相似度較高,低價格相似度較低,但都在 80% 以上。而最貴的松露橄欖油則因為添加松露只得 60.56% 的相似度。自行開發的程式具有簡單操作、將相似度量化、快速比對圖形結果等優點,且已成功應用在層析圖譜及拉曼光譜的比對上。
A program based on pattern recognition of data, obtained by GC/MS (gas chromatogram/mass spectrometry) and Raman spectrometry, is employed for the rapid screening of oils and related commodities. The degree of similarity is evaluated quantitatively by calculating a cross correlation factor (CCF) between the standard sample and reference commodities. We defined the similarity between A-spectrum and B-spectrum, either obtained from GC/MS or Raman, in the range from 100 to 0 %. The CCF value is close to unity when the spectral feature of the standard is similar to that of the reference; CCF = 1 when CCF is calculated between the same spectrum. In contrast, the CCF value is close to zero when the spectral features are completely different from each other. In the other words, when (A⋂B)/(A⋃B) = 1, similarity is considered as 100%, whereas when (A⋂B)/(A⋃B) = 0, then similarity is counted to 0%. The CCF was calculated using a personal computer and the program was written in LabVIEW (Laboratory Virtual Instrumentation Engineering Workbench). As a result, when the Florihana lavender vera wild essential oil was selected as the standard sample, 6 types of commercial lavender oils were compared. We found that, based on the GC/MS data, the other commercial essential oils provide 30 ~ 85% similarities. On the other hand, based on the Raman data, when the Nissin olive oil was selected as the standard sample, 4 types of commercial olive oils were also compared. The findings show that the other commercial olive oils provide 60 ~ 95% similarities.
[1] Cruces, M. P., Pimentel, E., & Zimmering, S. (2009). Evidence that low concentrations of chlorophyllin (CHLN) increase the genetic damage induced by gamma rays in somatic cells of Drosophila. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 679(1), 84-86.
[2] Ferruzzi, M. G., & Schwartz, S. J. (2005). Thermal degradation of commercial grade sodium copper chlorophyllin. Journal of agricultural and food chemistry,53(18), 7098-7102.
[3] Harrisson, J., Levin, S. E., & Trabin, B. (1954). The safety and fate of potassium sodium copper chlorophyllin and other copper compounds. Journal of the American Pharmaceutical Association, 43(12), 722-737.
[4] Nelson, R. L. (1991). Chlorophyllin, an antimutagen, acts as a tumor promoter in the rat-dimethylhydrazine colon carcinogenesis model. Anticancer research,12(3), 737-739.
[5] Olvera, O., Arceo, C., & Zimmering, S. (2000). Chlorophyllin [CHLN] and the mutagenicity of monofunctional alkylating agents in Drosophila: the action of CHLN need not include an influence on metabolic activation. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 467(2), 113-117.
[6] Pimentel, E., Cruces, M. P., & Zimmering, S. (1999). On the persistence of the radioprotective effect of chlorophyllin (CHLN) in somatic cells of Drosophila.Mutation Research/Genetic Toxicology and Environmental Mutagenesis,446(2), 189-192.
[7] Ferruzzi, M. G., & Schwartz, S. J. (2005). Thermal degradation of commercial grade sodium copper chlorophyllin. Journal of agricultural and food chemistry,53(18), 7098-7102.
[8] El‐Abassy, R. M., Donfack, P., & Materny, A. (2009). Visible Raman spectroscopy for the discrimination of olive oils from different vegetable oils and the detection of adulteration. Journal of Raman Spectroscopy, 40(9), 1284-1289.
[9] Bauer, A. J. R. RAMAN SPECTROSCOPIC DETECTION OF OLIVE OIL ADULTERATION.
[10] Jimbo, D., Kimura, Y., Taniguchi, M., Inoue, M., & Urakami, K. (2009). Effect of aromatherapy on patients with Alzheimer's disease. Psychogeriatrics, 9(4), 173-179.
[11] Lafhal, S., Vanloot, P., Bombarda, I., Valls, R., Kister, J., & Dupuy, N. (2015). Raman spectroscopy for identification and quantification analysis of essential oil varieties: a multivariate approach applied to lavender and lavandin essential oils. Journal of Raman Spectroscopy, 46(6), 577-585.
[12] Shellie, R., Mondello, L., Marriott, P., & Dugo, G. (2002). Characterisation of lavender essential oils by using gas chromatography–mass spectrometry with correlation of linear retention indices and comparison with comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 970(1), 225-234.
[13] Hanamanthagouda, M. S., Kakkalameli, S. B., Naik, P. M., Nagella, P., Seetharamareddy, H. R., & Murthy, H. N. (2010). Essential oils of Lavandula bipinnata and their antimicrobial activities. Food Chemistry, 118(3), 836-839.
[14] Da Porto, C., Decorti, D., & Kikic, I. (2009). Flavour compounds of Lavandula angustifolia L. to use in food manufacturing: Comparison of three different extraction methods. Food Chemistry, 112(4), 1072-1078.
[15] Kim, N. S., & Lee, D. S. (2002). Comparison of different extraction methods for the analysis of fragrances from Lavandula species by gas chromatography–mass spectrometry. Journal of Chromatography a, 982(1), 31-47.
[16] Cuttle, Leila, et al. "A review of first aid treatments for burn injuries." Burns 35.6 (2009): 768-775.
[17] Gattefossé, R. M. (1928). Aromatherapie. Giradot editeur. Paris.
[18] Valnet, J. (1966). Aromathérapie, traitement des maladies par les essences des plantes.
[19] Fischer-Rizzi, S. (1990). Complete aromatherapy handbook: essential oils for radiant health. Sterling Publishing Company, Inc..
[20] Penfold, A. R., & GRANT, R. (1923). Germicidal Values of Australian Essential Oils and Their Pure Constituents. Journal of the Proceedings of the Society of New South Wales, 57, 211.
[21] Fischer-Rizzi, S. (1990). Complete aromatherapy handbook: essential oils for radiant health. Sterling Publishing Company, Inc..
[22] Lin, P. W. K., Chan, W. C., Ng, B. F. L., & Lam, L. C. W. (2007). Efficacy of aromatherapy (Lavandula angustifolia) as an intervention for agitated behaviours in Chinese older persons with dementia: a cross‐over randomized trial. International journal of geriatric psychiatry, 22(5), 405-410.
[23] Verma, R. S., Rahman, L. U., Chanotiya, C. S., Verma, R. K., Chauhan, A., Yadav, A., ... & Yadav, A. K. (2010). Essential oil composition of Lavandula angustifolia Mill. cultivated in the mid hills of Uttarakhand, India. J. Serb. Chem. Soc, 75(3), 343-348.
[24] Harborne, J. B., & Williams, C. A. (2002). Phytochemistry of the genus Lavandula. In M. Lis-Balchin (Ed.), Lavender: The Genus Lavandula. CRC Press.
[25] Boelens, M. H. (1986). The essential oil of Spike Lavender Lavendula latifolia Vill (L. spica DC). Perfum. Flavor, 11, 43-63.
[26] Bonvehi, J. S., & Coll, F. V. (1993). Physico-chemical properties, composition and pollen spectrum of french lavender (Lavandula stoechas L.) honey produced in Spain. Zeitschrift für Lebensmittel-Untersuchung und Forschung,196(6), 511-517.
[27] Kubota, S., Momose, H., Yoneda, K., & Koshioka, M. (2010). Lavandula* intermedia is a Vernalization Type Plant. Japan Agricultural Research Quarterly: JARQ, 44(1), 67-72.
[28] Rohloff, J. (2002). Volatiles from rhizomes of Rhodiola rosea L. Phytochemistry,59(6), 655-661.
[29] Picone, J. M., MacTavish, H. S., & Clery, R. A. (2002). Emission of floral volatiles from Mahonia japonica (Berberidaceae). Phytochemistry, 60(6), 611-617.
[30] Himejima, M., Hobson, K. R., Otsuka, T., Wood, D. L., & Kubo, I. (1992). Antimicrobial terpenes from oleoresin of ponderosa pine treePinus ponderosa: A defense mechanism against microbial invasion. Journal of Chemical Ecology,18(10), 1809-1818.
[31] Lee, N. H., & Ho, J. W. (2008). Celastrol and terpenes as anti-infective agents.Anti-Infective Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Infective Agents), 7(2), 97-100.
[32] Menichini, F., Conforti, F., Rigano, D., Formisano, C., Piozzi, F., & Senatore, F. (2009). Phytochemical composition, anti-inflammatory and antitumour activities of four Teucrium essential oils from Greece. Food Chemistry, 115(2), 679-686.
[33] Belletti, N., Kamdem, S. S., Tabanelli, G., Lanciotti, R., & Gardini, F. (2010). Modeling of combined effects of citral, linalool and β-pinene used against Saccharomyces cerevisiae in citrus-based beverages subjected to a mild heat treatment. International Journal of Food Microbiology, 136(3), 283-289.
[34] Sakurada, T., Kuwahata, H., Katsuyama, S., Komatsu, T., Morrone, L. A., Corasaniti, M. T., ... & Sakurada, S. (2009). Intraplantar Injection Of Bergamot Essential Oil Into The Mouse Hindpaw: Effects On Capsaicin‐Induced Nociceptive Behaviors. International Review of Neurobiology, 85, 237-248.
[35] Re, L., Barocci, S., Sonnino, S., Mencarelli, A., Vivani, C., Paolucci, G., ... & Mosca, E. (2000). Linalool modifies the nicotinic receptor–ion channel kinetics at the mouse neuromuscular junction. Pharmacological Research, 42(2), 177-181.
[36] Peana, A. T., D'Aquila, P. S., Panin, F., Serra, G., Pippia, P., & Moretti, M. D. L. (2002). Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine, 9(8), 721-726.
[37] Juhás, Š., Bukovská, A., Čikoš, Š., Czikková, S., Fabian, D., & Koppel, J. (2009). Anti-inflammatory effects of Rosmarinus officinalis essential oil in mice.Acta Veterinaria Brno, 78(1), 121-127.
[38] Santos, F. A., Silva, R. M., Campos, A. R., De Araujo, R. P., Júnior, R. L., & Rao, V. S. N. (2004). 1, 8-cineole (eucalyptol), a monoterpene oxide attenuates the colonic damage in rats on acute TNBS-colitis. Food and chemical toxicology, 42(4), 579-584.
[39] Bedoya, L. M., Bermejo, P., & Abad, M. J. (2009). Anti-infectious activity in the cistaceae family in the Iberian Peninsula. Mini reviews in medicinal chemistry,9(5), 519-525.
[40] Chen, J., Sun, Z., Zhang, Y., Zeng, X., Qing, C., Liu, J., ... & Zhang, H. (2009). Synthesis of gibberellin derivatives with anti-tumor bioactivities. Bioorganic & medicinal chemistry letters, 19(18), 5496-5499.
[41] LaLone, C. A., Rizshsky, L., Solco, A., Nikolau, B., Murphy, P., & Birt, D. F. (2009). Unraveling the complexity of Echinacea fractions to identify alkylamides and ketones important for anti-inflammatory bioactivity. The FASEB Journal,23(1 Supplement), 104-5.
[42] Zhang, H. X., Hu, Z. H., Leng, P. S., Wang, W. H., Xu, F., & Zhao, J. (2013). Qualitative and quantitative analysis of floral volatile components from different varieties of Lilium spp. Scientia Agri Sin, 46(4), 790-799.
[43] Skoog, D. A., & West, D. M. (1997). Principles of instrumental analysis (5th ed.). Philadelphia: Saunders College. (p. 704.)
[44] Karasek, F. W., & Clement, R. E. (2012). Basic gas chromatography-mass spectrometry: principles and techniques. Elsevier.
[45] Skoog, D. A., & West, D. M. (1997). Principles of instrumental analysis (5th ed.). Philadelphia: Saunders College. (p. 713.)
[46] March, R. E., & Hughes, R. J. (1989). Quadrupole storage mass spectrometry. Wiley.
[47] Skoog, D. A., & West, D. M. (1997). Principles of instrumental analysis (5th ed.). Philadelphia: Saunders College. (p. 503.)
[48] Message, G. M. (1984). In Pratical aspects of chromatography/mass spectrometry. chapter 5.
[49] Watson, J. T., & Sparkman, O. D. (2007). Introduction to mass spectrometry: instrumentation, applications, and strategies for data interpretation. John Wiley & Sons. (p. 247.)
[50] Liu, H. W.; Wu, B. Z.; Lo, J. G. (2004). The. Chinese Chem. Soc, 62, No.3, 377-386.
[51] Van Bramer, S., & Goodrich, K. R. (2015). Determination of plant volatiles using solid phase microextraction GC–MS. Journal of Chemical Education, 92(5), 916-919.
[52] Giorgi, A., Panseri, S., Nanayakkara, N. N. M. C., & Chiesa, L. M. (2012). HS-SPME-GC/MS analysis of the volatile compounds of Achillea collina: evaluation of the emissions fingerprint induced by Myzus persicae infestation. Journal of Plant Biology, 55(3), 251-260.
[53] Abolghasemi, M. M., Karimi, B., & Yousefi, V. (2013). Periodic mesoporous organosilica with ionic liquid framework as a novel fiber coating for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons. Analytica chimica acta, 804, 280-286.
[54] Soto, V. C., Maldonado, I. B., Jofré, V. P., Galmarini, C. R., & Silva, M. F. (2015). Direct analysis of nectar and floral volatile organic compounds in hybrid onions by HS-SPME/GC–MS: Relationship with pollination and seed production. Microchemical Journal, 122, 110-118.
[55] Marton, D., Tapparo, A., Di Marco, V. B., Repice, C., Giorio, C., & Bogialli, S. (2013). Ultratrace determination of total and available cyanides in industrial wastewaters through a rapid headspace-based sample preparation and gas chromatography with nitrogen phosphorous detection analysis. Journal of Chromatography A, 1300, 209-216.
[56] Cai, Y., Yan, Z., Wang, L., NguyenVan, M., & Cai, Q. (2016). Magnetic solid phase extraction and static headspace gas chromatography–mass spectrometry method for the analysis of polycyclic aromatic hydrocarbons.Journal of Chromatography A, 1429, 97-106.
[57] McCreery, R. L. (2005). Raman spectroscopy for chemical analysis (Vol. 225). John Wiley & Sons.
[58] Nie, Shuming, and Steven R. Emory. "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering." science 275.5303 (1997): 1102-1106.
[59] Kneipp, K., Wang, Y., Kneipp, H., Perelman, L. T., Itzkan, I., Dasari, R. R., & Feld, M. S. (1997). Single molecule detection using surface-enhanced Raman scattering (SERS). Physical review letters, 78(9), 1667.
[60] Maruyama, Y., Ishikawa, M., & Futamata, M. (2001). Surface-Enhanced Raman Scattering of Single Adenine Molecules on Silver Colloidal Particles.Chemistry Letters, (8), 834-835.
[61] Gould, R. G. (1959, June). The LASER, light amplification by stimulated emission of radiation. In The Ann Arbor conference on optical pumping, the University of Michigan (Vol. 15, p. 128).
[62] Chu, Steven; Townes, Charles (2003). Biographical Memoirs. National Academy of Sciences. (vol. 83, p. 202)
[63] Janesick, J. R. (2001). Scientific charge-coupled devices (Vol. 117). Bellingham, Washington: SPIE press..
[64] Tompsett, M. F., Amelio, G. F., Bertram, W. J., Buckley, R. R., McNamara, W. J., Mikkelsen, J. C., & Sealer, D. A. (1971). Charge-coupled imaging devices: Experimental results. IEEE Transactions on Electron Devices, 18(11), 992-996.
[65] Vo-Dinh, T. (1998). Surface-enhanced Raman spectroscopy using metallic nanostructures. TrAC Trends in Analytical Chemistry, 17(8), 557-582.
[66] Tu, A. T. (1982). Raman spectroscopy in biology: principles and applications. John Wiley & Sons.
[67] Wells, L. K., & Travis, J. (1996). LabVIEW for everyone: graphical programming made even easier. Prentice-Hall, Inc..
[68] Johnson, G. W. (1997). LabVIEW graphical programming. Tata McGraw-Hill Education.
[69] Travis, J., & Kring, J. (2007). LabVIEW for everyone. Prentice-Hall.
[70] Bitter, R., Mohiuddin, T., & Nawrocki, M. (2006). LabVIEW: Advanced programming techniques. CRC Press.