研究生: |
楊超宇 Chao-Yu Yang |
---|---|
論文名稱: |
全球海水面升降變遷曲線對比井測資料研究 The Study of The Correlation Between Well Logs and Global Sea-level Change Curves |
指導教授: |
李通藝
Lee, Tung-Yi |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 層序地層學 、井測資料 、對比 、經驗模組拆解 、數位信號處理 、珈瑪井測資料 、全球海水面變遷 |
英文關鍵詞: | Sequence stratigraphy, well logs, correlation, empirical mode decomposition, digital signal processing, gamma ray logs, global sea-level change |
論文種類: | 學術論文 |
相關次數: | 點閱:203 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
層序地層學理論認為在海相的碎屑岩地層中,沉積物粒度變化主要受控於全球海水面升降變遷;而珈瑪井測紀錄是推估沉積物顆粒大小排列變化時,常用的一種工具。依照上述性質,全球海水面升降變遷將主導珈瑪井測紀錄的數值變化。本研究選用二筆被廣泛使用的全球海水面變遷曲線作為標準,對比來自三個不同海洋沉積環境的珈瑪井測紀錄。研究證實只要慎選研究地點,層序地層學理論應該都能適用。
決定地層的年代是地質學研究與地質資源探勘的重要課題,地質資料對比是其中一個常用的方法;由於海水面升降變化是全球一致的,全球海水面升降變遷可以作為全球地層對比的標準;更進一步,透過井測資料對比全球海水面變遷可以有效率地評估出地層的沉積年代。
面對兩筆取樣的時間或空間差異大的資料時,可以透過濾波降低對比的難度。本研究採取經驗模組拆解法,藉著信號拆解與重構,可以將井測資料與海水面變遷曲線中,具有已知地質意義或波型適合對比的分量獨立出來討論;此外,透過信號拆解與重構,能讓人工直覺對比,工作速率加快且結果較為客觀。由井測資料對比全球海水面變遷曲線的成果,基本上可以發現:在大陸邊緣具有穩定沉積速率的地層中,大多數探測井的珈瑪射線紀錄,皆可能反應大尺度的海水面升降週期變化。此外,即便理論基礎或牽涉到的變因都不是很清楚,此技術可以快速且有效率地評估地層的沉積年代;就經濟效益觀點而言,應該可以廣泛地運用到全球的探勘工作上。
Sequence stratigraphic theory attributes the changes of sediment stacking patterns mainly to the global sea-level fluctuation. The gamma ray logs normally can reflect the shale content of the formation. Combine these two statements, the value of gamma ray logs may reflect the global sea-level changes. Global sea-level changes could have been used as the standard for establishing a stratigraphic correlation technique. The correlation between sea-level change curves and gamma ray logs may be an efficient and economically feasible method for obtaining chronological age of the sedimentary strata. In this study, we chose two global sea-level change curves and three gamma ray logs from three wells located at different oceanic environments. To improve the efficiency of the correlating process and the accuracy of the result, we use digital signal processing methods. For choosing suitable component of the data for correlation, we decompose and reconstruct the signals by empirical mode decomposition which is an adaptive filter.
It is possible to prove that the pattern of gamma ray logs in ideal sedimentary environments is similar to the pattern of global sea-level curves. Therefore, global sea-level change curves can be used as a universal standard for the correlation of gamma ray logs. The correlation between global sea-level change curves and gamma ray logs can be develop as an efficient practice for deciphering the age of the strata and applying to resource exploration.
Bleuer, N. K., 2004, Slow-logging subtle sequences : the gamma-ray log character of glacigenic and other unconsolidated sedimentary sequences, Bloomington, Indiana University : Indiana Geological Survey.
Boggs, S., 1995, Principles of sedimentology and stratigraphy 2nd edition, Englewood Cliffs, N.J., Prentice Hall. 774 p.
Chen, C.-S., and Jeng, Y., 2013, Natural logarithm transformed EEMD instantaneous attributes of reflection data: Journal of Applied Geophysics, v. 95, no. Aug., p. 53-65.
Ellis, D. V., and Singer, J. M., 2007, Well logging for earth scientists, Dordrecht, The Netherlands, Springer. 692 p.
Fleming, A. H., 1994, The hydrogeology of Allen County, Indiana: a geologic and ground-water atlas, Allen County Dept. of Planning Services, Indiana Geological Survey Special Report, 111 p.
Haq, B. U., Hardenbol, J., and Vail, P. R., 1987, Chronology of Fluctuating Sea Levels Since the Triassic: Science, v. 235, no. 4793, p. 1156-1167.
Haykin, S. S., and Van Veen, B., 2005, Signals and systems 2nd edition, Hoboken, NJ, John Wiley & Sons. 820 p.
Hays, J. D., Imbrie, J., and Shackleton, N. J., 1976, Variations in the Earth's Orbit: Pacemaker of the Ice Ages: Science, v. 194, no. 4270, p. 1121-1132.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., and Liu, H. H., 1998, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, v. 454, no. 1971, p. 903-995.
Jeng, Y., Lin, M.-J., Chen, C.-S., and Wang, Y.-H., 2007, Noise reduction and data recovery for a VLF-EM survey using a nonlinear decomposition method: Geophysics, v. 72, no. 5, p. F223-F235.
Jervey, M. T., 1988, Quantitative geological modeling of siliciclastic rock sequences and their seismic expression: Sea-Level Changes: An Integrated Approach: SEPM, Special Publication, v. 42, p. 47-69.
Keigwin, L. D., Rio, D., Acton, G. D., Bianchi, G. G., Borowski, W., Cagatay, N., Chaisson, W. P., Clement, B. M., Cortijo, E., Dunbar, G. B., Flood, R. D., Franz, S.-O., Giosan, L., Gruetzner, J., Hagen, S., Haskell, B., Horowitz, M. J., Laine, E. P., Lund, S. P., Okada, M., Poli, M.-S., Raffi, I., Reuer, M. K., Ternois, Y. G., Williams, T., Winter, D. M., Yokokawa, M. E., and Swanson, S. E., 1998, Proceedings of the Ocean Drilling Program; Initial reports; Northwest Atlantic sediment drifts, covering Leg 172 of the cruises of the drilling vessel JOIDES Resolution, Charleston, South Carolina, to Lisbon, Portugal, Sites 1054-1064, 14 February-15 April, 1997: Ocean Drilling Program.
Kendall, C. G. S. C., and Lerche, I., 1988, The rise and fall of eustasy: Sea-Level Changes: An Integrated Approach: SEPM, Special Publication, v. 42, p. 3-17.
Laskar, J., Fienga, A., Gastineau, M., and Manche, H., 2011, La2010: a new orbital solution for the long-term motion of the Earth: Astronomy & Astrophysics, v. 532, A89.
Laskar, J., Joutel, F., and Boudin, F., 1993, Orbital, precessional, and insolation quantities for the Earth from -20 Myr to+ 10 Myr: Astronomy and Astrophysics, v. 270, p. 522-533.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A., and Levrard, B., 2004, A long-term numerical solution for the insolation quantities of the Earth: Astronomy & Astrophysics, v. 428, no. 1, p. 261-285.
Lisiecki, L. E., and Lisiecki, P. A., 2002, Application of dynamic programming to the correlation of paleoclimate records: Paleoceanography, v. 17, no. 4, 1049.
Lisiecki, L. E., and Raymo, M. E., 2005, A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records: Paleoceanography, v. 20, no. 1, PA1003.
Mallat, S. G., 2009, A wavelet tour of signal processing : the sparse way 3rd edition, Boston, Elsevier/Academic Press. 832 p.
Milankovitch, M., 1969, Canon of insolation and the ice-age problem (Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem) Belgrade, 1941, Jerusalem, Israel Program for Scientific Translations; [available from U.S. Dept. of Commerce, Clearinghouse for Federal Scientific and Technical Information, Springfield, Va.].
Miller, K., Mountain, G., Wright, J., and Browning, J., 2011, A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records: Oceanography, v. 24, no. 2, p. 40-53.
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N., and Pekar, S. F., 2005, The Phanerozoic record of global sea-level change: science, v. 310, no. 5752, p. 1293-1298.
Mitra, S. K., 2001, Digital Signal Processing: A Computer-based Approach 2nd edition, Boston, McGraw-Hill Higher Education. 896 p.
Posamentier, H., Jervey, M., and Vail, P., 1988, Eustatic controls on clastic deposition I—conceptual framework: Sea-Level Changes: An Integrated Approach: SEPM, Special Publication, v. 42, p. 109-124.
Raffi, I., 2002, Revision of the early-middle pleistocene calcareous nannofossil biochronology (1.75–0.85 Ma): Marine Micropaleontology, v. 45, no. 1, p. 25-55.
Rider, H., 2002, The Geological Interpretation of Well Logs 2nd Edition, Houston, Rider-French Consulting Limited, 280 p.
Tian, J., Zhao, Q., Wang, P., Li, Q., and Cheng, X., 2008, Astronomically modulated Neogene sediment records from the South China Sea: Paleoceanography, v. 23, no. 3, p. PA3210.
Vail, P. R., Mitchum, R. M., Jr., and Thompson, S., III, 1977a, Seismic Stratigraphy and Global Changes of Sea Level: Part 3. Relative Changes of Sea Level from Coastal Onlap: Section 2. Application of Seismic Reflection Configuration to Stratigrapic Interpretation: Seismic Stratigraphy--Applications to Hydrocarbon Exploration Memoir 26, p. 63-81.
Vail, P. R., Todd, R. G., and Sangree, J. B., 1977b, Seismic Stratigraphy and Global Changes of Sea Level: Part 5. Chronostratigraphic Significance of Seismic Reflections: Section 2. Application of Seismic Reflection Configuration to Stratigraphic Interpretation: Seismic Stratigraphy--Applications to Hydrocarbon Exploration Memoir 26, p. 99-116.
Wu, Z., and Huang, N. E., 2005, Ensemble empirical mode decomposition: a noise assisted data analysis method, Calverton, MD, Center for Ocean-Land-Atmosphere Studies, COLA Technical Reports, v. 193. 49p.