簡易檢索 / 詳目顯示

研究生: 蘇紹業
Su, Shau-Yei
論文名稱: 二維常曲率流形的量子化
Quantization of two-dimentional manifolds with constant
指導教授: 馮明光
Fung, Ming-Kong
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
畢業學年度: 84
語文別: 中文
論文頁數: 38
中文關鍵詞: 流形量子化路徑積分
英文關鍵詞: manifold, quantization, path integral
論文種類: 學術論文
相關次數: 點閱:330下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是討論一些二維常曲率流形量子化的拓樸效果。研究的對象
    包括球面、圓柱面、輪胎面以及Lobachevsky plane,利用相空間上路徑
    積分的方法討論之。先從較為熟悉的球面及圓柱面開始計算,並將其結果
    與量子力學作一比較。我們也嘗試將這套方法應用到輪胎面及
    Lobachevsky plane上,試著去了解其物理內涵。

    The topological effects of some two-dimensional manifolds
    with constant curvature are considered here. Our study covers
    the cases of the sphere, the cylinder, the torus, and the
    Lobachevsky plane. We use the method of Feynman pathintegral on
    the phase space to deal with them. We start our discussion with
    the more well-known cases of the sphere and the cylinder, and
    compare the results with that expected from Quantum Mechanics.
    In addtion, we also attempt to apply the method to the torus and
    Lobachevsky plane, trying to understand the physical meaning of
    them.
    The topological effects of some two-dimensional manifolds

    無法下載圖示
    QR CODE