研究生: |
顏宏吉 |
---|---|
論文名稱: |
二硫化鐵奈米晶體製備與其在光電元件應用 Preparation of Iron Disulfide Nanocrystals and their Application in Pohtovoltaic Device |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 二硫化鐵 |
英文關鍵詞: | Iron disulfide |
論文種類: | 學術論文 |
相關次數: | 點閱:228 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文,我們利用 Fe-oleylamine 錯合物和元素硫於有機溶劑中反應形成二硫化鐵半導體奈米晶體。Fe-oleylamine 是由氯化鐵和oleylamine 反應所得到。在只使用 oleylamine 作為溶劑的情況下,我們所得到的二硫化鐵奈米晶體在TEM底下呈現花的形狀。當改變反應溫度以及改變oleylamine 和 1-octadecene 的溶劑比例,我們可以得到圓球形以及中空立方體的二硫化鐵奈米晶體。利用TEM、SEM、XRD等儀器分析所合成的二硫化鐵其形貌和晶體結構,發現合成的二硫化鐵奈米晶體為黃鐵礦結構(pyrite)。由於黃鐵礦的環境接受性以及高吸光係數,因此我們利用合成的花型二硫化鐵奈米晶體作為異質接面有機太陽能電池以及光感測器的材料。進而測量此類型太陽能電池在AM1.5G的模擬光源下,其光電轉換效率為0.07%。
In this study, we introduced the synthesis of semiconductor nanocrystals by adding elemental sulfur to Fe-oleylamine complexes to produce FeS2 nanocrystals under wet solution phase chemical synthesis. Fe- oleylamine complexes were obtained from the reaction of Iron chloride and oleylamine. When only oleylamine was used as solvent, the synthesized FeS2 nanocrystals were flower-shaped. Spherical FeS2 and hollow cubic FeS2 were obtained by changing the reaction temperature and the solvent ratio of oleylamine and 1-octadecene. The crystal morphology and structure were identified by using material analytical instrument, TEM, SEM, and XRD. All the synthesized FeS2 was pyrite structure. Pyrite (FeS2) is a candidate as an alternative material for photovoltaic device due to its environment compatibility, low cost and its high absorption coefficient. The synthesized FeS2 (pyrite) were used as hybrid solar cell material and photocurrent response material. The resulting hybrid solar cell demonstrated a power conversion efficiency of 0.07% under simulated AM1.5G illumination.
1. (a) A. P. Alivisatos Science 1996, 271, 933. (b) C. C. Chen, A. B. Herhold, C. S. Johnson, and A. P. Alivisatos Science 1997, 276, 398.
2. Y. D. Glinka, S. H. Lin, L. P. Hwang, Y. T. Chen, and N. H. Tolk Phys. Rev. B 2001, 64, 085421.
3. (a) J. Joo, H. B. Na, T. Yu, J. H. Yu, Y. W. Kim, F. Wu, J. Z. Zhang, and T. Hyeon J. Am. Chem. Soc. 2003, 125, 11100. (b) Y. D. Yin, M. R. Robert, C. K. Erdonmez, S. Hughes, G. A. Somorjai, and A. P. Alivisatos Science 2004, 304, 711. (c) A. Ghezelbash, and B. A. Korgel Langmuir 2005, 21, 9451. (d) K. T. Yong, Y. Sahoo, K. R. Choudhury, M. T. Swihart, J. R. Minter, and P. N. Prasad Chem. Mater 2006, 18, 5965. (e) X. H. Chen, and R. Fan Chem. Mater. 2001, 13, 802. (f) T. Kaneko, K. Tazawa, T. Koyama, K. Satou, K. Shimasaki, and Y. Kageyama Energy & Fuels 1998, 12, 897.
4. N. S. Lewis Science 2007, 315, 798.
5. R. D. Schaller, M. A. Petruska, and V. I. Klimov Appl. Phys. Lett. 2005, 87, 253102.
6. B. O'Regan, and M.Grätzel Nature 1991, 353, 737.
7. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P.D. Yang Nature Materials 2005, 4, 455.
8. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl Science 1992, 258, 1474.
9. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger Science 1995, 270, 1789.
10. C. Y. Kwong, A. B. Djurisic, P. C. Chui, K. W. Cheng, and W. K. Chan Chemical Physics Letters 2004, 384, 372.
11. W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen J. Mater. Chem. 2005, 15, 2985.
12. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos Science 2002, 295, 24254.
13. I. Gur, N. A. Fromer, C. P. Chen, A. G. Kanaras, and A. P. Alivisatos Nano Lett. 2007, 7, 409.
14. S.Coe, W. K. Woo, M. Bawendi, and V. Bulovi Nature 2002 420 800.
15. A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonso-Vante, K. Bilker, M. Bronold, C. Hpfner and H. Tributsch Solar Energy Materials and Solar Cells 1993, 29, 289.
16. (a) J. P. Wilcoxon, P. P. Newcomer and G. A. Samara Solid State Communications 1996, 98, 581. (b) P. Gao, Yi Xie, L. Ye, Y. Chen, and Q. Guo Crystal Growth & Design, 2006, 6, 584.
17. (a) B. Ouertani, J. Ouerfelli, M. Saadoun, B. BessaRs, H. Ezzaouia, and J.C. Bernede Materials Characterization 2005, 54, 431. (b) S. W. Lehner, K .S. Savage, and J. C. Ayers Journal of Crystal Growth 2006, 286, 306.
18. (a) X. Y. Chen, Z. G. Wang, X. Wang, J. X. Wan, J. W. Liu, and Y. T. Qian Inorg. Chem. 2005, 44, 951 (b) H. Duana, and Y. F. Zhenga, Y. Z. Dong, X. G. Zhang, and Y. F. Sun Materials Research Bulletin 2004, 39, 1861.
19. (a) B. Ouertani, J. Ouerfelli, M. Saadoun, B. Bessais, H. Ezzaouia, and J. C. Bernede Materials Characterization 2005, 54, 431. (b) S. W. Lehner, K. S. Savage, and J. C. Ayers Journal of Crystal Growth 2006, 286, 306. (c) A. Ennaoui, G. Schlichth6rl, S. Fiechter, and H. Tributsch Solar Energy Materials and Solar Cells 1992, 25, 169. (d) A. Ennaoui, S. Fiechter, H. Goslowsky, and H. Tributsch J. Electrochem. Soc. Electrochemical Science And Technology 1985, 132, 1579.
20. (a) S. Nakamura, and A. Yamamoto Solar Energy Materials & Solar Cells 2001, 65, 79. (b) Y. Z. Dong, Y. F. Zheng, H. Duan, Y. F. Sun, and Y. H. Chen Materials Letters 2005, 59, 2398.
21. (a) W. Luo, Y. Xie, K. Zhu, and F. Zheng Nanotechnology 2006, 17, 5702. (b) D. G. Wan, Y. T. Wang, Z. P. Zhou, G. Q. Yang, B. Y Wang, and L. Wei Materials Science and Engineering B 2005, 122, 156.
22.(a) E. Hirahara, and M. Muratami, J. Phys. Chem. Solids 1958, 7, 281. (b) J. R. Gosselin, M. G. Townsend, and R. J. Tremblay, Solid State Commun. 1976, 19, 799. (c) J. L. Horwood, M. G. Townsend, and A. H. Webster, J. Solid State Chem. 1976, 17, 35. (d) K. Shimada, T. Mizokawa, K. Mamiya, T. Saitoh, A. Fujimori, K. Ono, A. Kakizaki, T. Ishii, M. Shirai, and T. Kamimura, Phys. Rev. B 1998, 57, 8845. (e) A. Rohrbach, J. Hafner, and G. Kresse, J. Phys.: Condens. Matter 2003, 15, 979.
23. (a) S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent Nature Materials 2005, 4, 138. (b) J. S. Steckel, S.Coe-Sullivan, V. Bulovic, and M. Bawendi, Adv. Mater. 2003, 15, 1862.