研究生: |
劉彥辰 Liu, Yen-Chen |
---|---|
論文名稱: |
應用資料探勘技術探討顧客保留模型 The Application of Data Mining Techniques in Customer Retention Model |
指導教授: |
施人英
Shih, Jen-Ying |
學位類別: |
碩士 Master |
系所名稱: |
全球經營與策略研究所 Graduate Institute of Global Business and Strategy |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 資料探勘 、顧客關係管理 、顧客保留 、決策樹 、類神經網路 、羅吉斯迴歸 |
英文關鍵詞: | data mining, customer relationship management, customer retention, decision tree, artificial neural network, logistic regression |
DOI URL: | https://doi.org/10.6345/NTNU202205449 |
論文種類: | 學術論文 |
相關次數: | 點閱:263 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
直效行銷近年來在物流發展與法規的保障等因素下已經有明顯的成長,各大通路業者拜資料庫系統健全之賜,透過來往交易中得到豐富的顧客資料與交易紀錄,如性別、年齡、購買金額、購買時間、購買商品類別等,因此如何妥善利用這些資料來提升對顧客的了解,並使用適當的資料探勘技術,提供給顧客個人化的行銷與服務,讓通路業者能在競爭中獲得先機,將成為未來廠商重要的課題。
本研究利用資料探勘中集群、分類、關聯分析技術於顧客關係管理,達到顧客保留之目的。將透過一個年度消費者交易資料及商品資料,轉換出176筆攸關變數,先將消費者依照購買行為做出分群,再運用決策樹、類神經網路與羅吉斯迴歸作為分類分析的工具,尋找出下一個年度第一期型錄寄發名單中的消費者是否購買商品,並評估分類之準確度,再比較未經分類直接採用各分類分析的準確度。透過關聯分析中將顧客分為男女兩組,探討顧客在商品購買中的關聯性,結合分析結果,找出目標消費客群,並期望能將此資料探勘之成果研擬出針對不同顧客的行銷策略,達到顧客保留之目的。
透過本研究之分析,通路廠商能夠更有效對顧客進行區隔,根據顧客之消費特性及基本資料所產生的變數列出分類規則,能夠在型錄寄發對象的選擇有更客觀的參考依據,而研究成果期待能為通路廠商將有限的行銷資源做出最有效率的發揮。
In recent years, direct-marketing has grown significantly based on the evolvement of logistics and the rule of legal protection. Most of stores developed database system to collect customer profiles and transaction records. The most important issue in these stores is how to use the information to enhance realization of customer transactions properly. We can use data-mining technology to analyze these data and provide customization service to customers.
This research used data-mining (clustering, classification and association) in customer relationship management to reach the target customer retention. The customer profiles and one-year transaction records were used to generate 176 variables. The first step is to conduct cluster analysis based on purchasing behavior of consumers then classification analysis is used in each group of customers to find out who will buy through catalogue in the next year. The second step is to compare the precision of the model without using cluster analysis. Finally, we use association to explore customers’ purchase association among items. We integrate the results of analysis to find target customers and develop marketing strategies for customer retention.
Through this research, companies can sell products effectively. According to the classification rules, companies can choose the right customers to send catalogues objectively. The expectation of this research is to let the sellers maximize their efficiency under the condition of limited marketing resources through data mining.
Agrawal, R., Imieliński, T., & Swami, A. (1993). A Novel Genetic Algorithm Based on Image Databases for Mining Association Rules. ACM, 207-216.
Agrawal, R.,& Srikant, R. (1994). Fast Algorithms for Mining Association Rules. UMI Dissertations Publishing.
Anderberg, M. R. (1973). Cluster Analysis for Applications. Academic Press.
Berkson, J. (1944). Application of the Logistic Function to Bio-assay. Journal of the American Statistical Association, 9, 357-365.
Berry, M.J.A., & Linoff, G. (2004). Data mining techniques: for Marketing, Sales, and Customer Relationship Management. Wiley Pub.
Beal, R., & Jackson, T. (1990). Neural Computing: An Introduction. Discrete Applied Mathematics.
Berson, A., Smith, S., & Thearling, K. (2000). Building Data Mining Applications for CRM. McGraw-Hill.
Bolton, R.N. (1998). A Dynamic Model of the Duration of the Customer's Relationship with a Continuous Service Provider: The Role of Satisfaction. INFORMS, 17(1), 45-65.
Bolton, R.N., Lemon, K.N., & Verhoef, P.C. (2004). The Theoretical Underpinnings of Customer Asset Management: A Framework and Propositions for Future Research. Journal of the Academy of Marketing Science, 32(3), 271-292.
Bose, I., & Chen, X. (2008). Quantitative models for direct marketing: A review from systems perspective. Elsevier B.V, 195(1), 1-16.
Campbell, L., & Diamond, W. D. (1992). Framing and Sales Promotion: The Characteristics of a Good Deal. Journal of Consumer Marketing, 7(4), 25-31.
Chain, S.A. (2006). Negative returns. Lebhar-Friedman, Inc, 82(12), 26.
Che, Y. -K. (1996). Customer return policies for experience goods. The Journal of Industrial Economics, 44, 17-24
Cheung, K. W., Kwok, J. T., Law, M. H., & Tsui, K. C. (2003). Mining customer product ratings for personalized marketing. Decision Support Systems, 35, 231-243.
Cheng, C.H., & Chen, Y. S. (2009). Classifying the segmentation of customer value via RFM model and RS theory. Expert Systems With Applications, 36(3), 4176-4184.
Chitturi, R., Rajagopal, R., & Vijay, M. (2008). Delight by design: The role of hedonic versus utilitarian benefits. Journal of Marketing, 72(3), 48-63.
Cort, S. G., & Dominguez, L. V. (1977). Cross-Shopping and Retail Growth. Journal of Marketing Research. 14(2), 187-192.
Dawson, C.W., & Wilby, R.L. (2001). Hydrological modelling using artificial neural networks. Progress in Physical Geography, 25(1), 80-108.
Gerpott, T.J., Rams, W., & Schindler, A. (2001). Customer retention, loyalty, and satisfaction in the German mobile cellular telecommunications market. Elsevier Science, 25(4), 249-269.
Goodman, J. (1992). Leveraging the Customer Database to Your Competitive Advantage. Direct Marketing, 55(8), 26.
Griffin, J. (1995). Customer loyalty: How to earn it, how to keep it. Lexington Books.
Grupe, F. H., & Owrang, M. M. (1995). Data base mining: Discovering new knowledge and competitive advantage. Information Systems Management, 12(4),
26-31
Han, J., Kamber, M., & Pei, J. (2011). Data Mining : Concepts and Techniques. Morgan Kaufmann.
Hennig-Thurau, T., & Klee A. (1997). The impact of customer satisfaction and relationship quality on customer retention: A critical reassessment and model development. Wiley Periodicals Inc , 14(8), 737-764.
Hirose, Y., Yamashita, K., & Hijiya, S. (1991). Back-propagation algorithm which varies the number of hidden units. Neural Networks, 4, 61–66.
Hoke, H.R.(1996). Editorial. Direct Marketing, 58(8), 80.
James, E. L., & Cunningham, I. C. M. (1987). “A Profile of Direct Marketing Television Shopper”. Journal of Direct Marketing, 1(4), 12-23.
Jiang, T., & Tuzhilin, A. (2006). Segmenting customers from population to individuals: Does 1-to-1 keep your customers forever. IEEE Transactions on Knowledge Data Engineering, 18(10), 1297-1311.
Jones, M.A., Mothersbuagh D. L., & Beatty S.E. (2000). Switching Barriers and Repurchase Intentions in Services. UMI Dissertations Publishing, 76(2), 259-274.
Juan, W., Pute, W., & Xining, Z. (2013). Soil infiltration based on bp neural network and grey relational analysis. Sociedade Brasileira de Ciência do Solo, 37(1).
Kim, E., Kim, W., & Lee, Y. (2003). Combination of multiple classifiers for the customer’s purchase behavior prediction. Decision Support Systems, 34(2), 167-175.
Kim, J.K., Song, H.S., Kim, T.S., & Kim, H.K. (2005). Detecting the change of customer behavior based on decision tree analysis. Blackwell Publishing. 22(4), 193-205.
Kincaid, J. W. (2003). Customer relationship management: Getting it right. Prentice Hall.
Kotler, P. (2000). Marketing management. Prentice Hall of India.
Kumar, V., George M., & Pancras J. (2008). Cross-Buying in Retailing: Drivers and consequences. Journal of retailing. 84(1), 15-27.
Li, C., & Ling, C.X. (1998). Data Mining for direct marketing: Problem and solutions. UMI Dissertations Publishing.
Lars, G., Anne, M., & Kai, K. (2000). The Relationship Between Customer Satisfaction and Loyalty: Cross-Industry Differences. Total Quality Management, 11, 509-516.
Parvatiyar, A., & Sheth, J. N. (2001). Customer relationship management: Emerging practice, process, and discipline. Journal of Economic & Social Research, 3(2), 1-34.
Peppers, D., Rogers, M., & Dorf, B. (1999). Is your company ready for one-to-one marketing? Harvard Business School Press, 77(1), 151.
Quinlan, J. R. (1990). Learning logical definitions from relations. Springer. 5(3), 239-266.
Reda, S. (2003). Study shows CRM implementation outpaces planning research points to continued investment despite the hurdles. Stores, 59(3), 94-97.
Reichheld, F.F., & Sasser, Jr, W.E. (1990). Zero Defections: Quality Comes to Services, Harvard Business Review, 68(5), 105-111.
Rigby, D.K., & Ledingham, D. (2004). CRM done right. Harvard Business Review. 82(11), 118-129.
Rumelhart D.E., Hinton G.E., & Williams R.J. (1986). Parallel distributed processing: explorations in the microstructure of cognition. MIT Press Computational Model Of Cognition and Perception series, 1, 318-362.
Su, X. (2009). Consumer return policies and supply chain performance. Inst, 11(4), 595-612.
Shannon, C. (2001). A mathematical theory of communication. ACM, 5(1), 3-55.
Shearer, C. (2000). The CRISP-DM model: the new blueprint for data mining. Journal of Data Warehousing. 5(4), 13-22.
Swift, R. S. (2001). Accelarating customer relationships: Using CRM and relationship technologies. Prentice Hall PTR.
Srinivasan, S.S., Anderson, R., & Ponnavolu, K. (2002). Customer loyalty in e-commerce: an exploration of its antecedents and consequences. Elsevier, 78(1), 41-50.
Tang, S. (2006). Going back on returns? ‘At any time, for any reason’ used to be the US mantra on refunds - but no longer. Financial Times.
Thomas, F., & Elias S. (1998). Business a successful CRM environment. The Applied Technologies Group.
Turban, E., Aronson, J. E., Liang, T. P., & Sharda, R. (2007). Decision support and business intelligence systems (Eighth ed.). Pearson Education.
Fayyad, U., & Piatetsky-Shapiro, G., & Smyth, P. (1996). From Data Mining to Knowledge Discovery in Databases. Communications of the ACM, 39(11), 24-26.
Hu, X. (2005). Data Mining Approach for Retailing Bank Customer Attrition Analysis. Applied Intelligence. 22(1), 47-60.
Hughes, A.M. (1994). Strategic Database Marketing. Probus Publishing.
Pei, Z., Paswan, A., & Yan, R. (2013). E-tailer's return policy, consumer's perception of return policy fairness and purchase intention. Journal of retailing and consumer services, 21(3), 249-257.
Verhoef, P.C. (2001). Analyzing customer relationships : linking relational constructs and marketing instruments to customer behavior. UMI Dissertations Publishing.
Ward, J.H. (1963). Hierarchical Grouping to Optimize an Objective Function. American Statistical Association. 58(301), 236-244.
Weng, S.-S., & Liu, M.-J. (2004). Feature-based recommendations for one-to-one marketing. Expert Systems With Applications, 26(4), 493-508.
Yegnanarayana, B. (2009). Artificial neural networks. Prentice-Hall of India.
中華民國交通部,交通統計月報,2015。