研究生: |
謝奇恆 Hsieh, Chi-Heng |
---|---|
論文名稱: |
利用模式化色域極點同色異譜重建物體頻譜反射率 Recovering Spectral Reflectance Based on Interpolation Method with Model-based Metameric Spectra of Extreme Points |
指導教授: |
周遵儒
Chou, Tzren-Ru |
學位類別: |
碩士 Master |
系所名稱: |
圖文傳播學系 Department of Graphic Arts and Communications |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 物體頻譜反射率 、模式化色域極點同色異譜 、內插法 、半牛頓法 、全色域 |
英文關鍵詞: | spectral reflectance, model-based metameric spectra of extreme points, interpolation, Quasi-Newton, whole gamut |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DGAC.004.2018.F05 |
論文種類: | 學術論文 |
相關次數: | 點閱:130 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
印刷科技與媒體影像傳播等大量使用色彩作為媒介的產業,皆依靠彩色複製(Color Reproduction)這項技術進行色彩再現,這項技術隨著科技的進步不停的更新、改變,現今由於傳播媒材越來越多樣化,跨媒材的色彩管理顯得十分重要。多頻譜影像(Multispectral Image)能完整儲存的物體頻譜資訊,提供不同條件下的色彩模擬,是彩色複製未來的趨勢,然而頻譜反射率不易取得,因此研究者們試圖以三刺激值重建頻譜反射率。
本研究利用內插法重建物體頻譜反射率,並設計一組模式化色域極點同色異譜(Model-based Metameric Spectra of Extreme Points),來解決內插重建法在訓練樣本不足時的計算問題,將內插重建法的計算範圍擴大至目前數位影像常用的sRGB全色域,並以RMSE、GFC及色差公式評估物體頻譜反射率重建結果、色彩模擬結果。
本研究一共進行三組實驗,重建色票樣本、重建sRGB全色域、重建多頻譜影像。研究結果顯示MMSEP能有效的擴大內插法的計算範圍至sRGB全色域,MMSEP+LI法、MMSEP+NNI法(統稱MMSEP內插法)在頻譜曲線形狀重建上比PCA法更符合目標頻譜,MMSEP內插法在更換光源時色差的增幅也較小,但在數位影像轉換多頻譜影像上,MMSEP內插法重建結果並不好,頻譜曲線形狀有所差異,甚至在部分像素上出現較大的色差值。
The industry such as printing technology, image communication and other exten-sively use of color as media are relying on color reproduction to reproduce color. This technique keep updating and changing with the progress of technology. Nowadays, due to the diversification of media, cross-media color management become more and more important. Multispectral images can fully recode spectral information of the ob-ject and provide color appearance under different conditions, is the future of color reproduction. However, spectra reflectance is not easy available, so researchers are trying to reconstruct spectral reflectance with tristimulus values.
In this study, the spectral reflectance of the object was reconstructed by using the sRGB values which were commonly used in the current digital images. A set of mod-el-based metameric spectra of extreme points was designed to solve the problem of the interpolation reconstruction method, the calculation of interpolation method was extended to sRGB color space. The reconstructed spectral reflectance of the object were evaluated by RMSE, GFC and color difference.
There were three experiments in this study, reconstructed spectra reflectance of color chips, reconstructed whole sRGB color space, reconstructed multispectral imag-es. The results showed that MMSEP can effectively expand the calculation range of interpolation method to whole sRGB color space, MMSEP + LI method and MMSEP + NNI method (collectively, MMSEP interpolation method) more conform to the tar-get spectrum than PCA method in the curve shape of spectral reflectance. The MMSEP interpolation method showed a small increase in color difference when the light source was replaced. However, in transforming digital images into multispectral images, the reconstructed results of MMSEP interpolation method were poor. The shapes of spectral curve were different, and had large color difference on some pixels.
Abed, F. M., Amirshahi, S. H., & Abed, M. R. M. (2009). Reconstruction of reflectance data using an interpolation technique. Journal of the Optical Society of America A, 26(3), 614-624.
Agahian, F., Amirshahi, S. A., & Amirshahi, S. H. (2008). Reconstruction of Reflectance Spectra Using Weighted Principal Component Analysis. Color research and application, 33(5), 360-371. doi: 10.1002/col.20431
Amidror, I. (2002). Scattered data interpolation methods for electronic imaging systems: a survey. Journal of electronic imaging, 11(2), 157-176. doi: 10.1117/1.1455013
Ansari, K., Amirshahi, S., & Moradian, S. (2006). Recovery of reflectance spectra from CIE tristimulus values using a progressive database selection technique. Coloration technology, 122(3), 128-134. doi: 10.1111/j.1478-4408.2006.00019.x
Ayala, F., Echávarri, J. F., Renet, P., & Negueruela, A. I. (2006). Use of three tristimulus values from surface reflectance spectra to calculate the principal components for reconstructing these spectra by using only three eigenvectors. Journal of the Optical Society of America A, 23(8), 2020-2026.
Berns, R. S., Imai, F. H., Burns, P. D., & Tzeng, D.-Y. (1998). Multi-spectral-based color reproduction research at the Munsell Color Science Laboratory. Journal of Electronic Imaging, 14-25.
Brauers, J., Schulte, N., & Aach, T. (2008). Multispectral Filter-Wheel Cameras: Geometric Distortion Model and Compensation Algorithms. IEEE Transactions on Image Processing, 17(12), 2368-2380. doi: 10.1109/TIP.2008.2006605
BruceLindbloom. (2009). Useful Color Equations. from http://www.brucelindbloom.com
CIE. (2000). About us. from http://www.cie.co.at/
Ergun, G., & Nagas, I. C. (2007). Color stability of silicone or acrylic denture liners: an in vitro investigation. European journal of dentistry, 1(3), 144-151.
Fairman, H. S., & Brill, M. H. (2004). The principal components of reflectances. Color research and application, 29(2), 104-110.
Foster, D. H., Amano, K., & Nascimento, S. M. C. (2004). Information Limits on Neural Identification of Colored Surfaces in Natural Scenes. Visual Neuroscience, 21, 331-336.
Harifi, T., Amirshahi, S. H., & Agahian, F. (2008). Recovery of reflectance spectra from colorimetric data using principal component analysis embedded regression technique. Optical Review, 15(6), 302-308.
Hideaki Haneishi, Takayuki Hasegawa, Asako Hosoi, Yasuaki Yokoyama, Tsumura, N., & Miyake, Y. (2000). System design for accurately estimating the spectral reflectance of art paintings. Applied Optics, 39(35), 6621-6632.
Hunt, R. W. G. (2004). The Reproduction of Colour (6 ed.). England: John Wiley & Sons Ltd.
Imai, F. H., Rosen, M. R., & Berns, R. S. (2002). Comparative study of metrics for spectral match quality. Paper presented at the Conference on Colour in Graphics, Imaging, and Vision.
Kim, B. G., Han, J.-w., & Park, S.-b. (2012). Spectral reflectivity recovery from the tristimulus values using a hybrid method. Journal of the Optical Society of America A, 29(12), 2612-2621.
Lee, M.-H., Park, H., Ryu, I., & Park, J.-I. (2012). Fast model-based multispectral imaging using nonnegative principal component analysis. Optical Letters, 37(11), 1937-1939.
Mansouri, A., Sliwa, T., Hardeberg, J. Y., & Voisin, Y. (2008). An Adaptive-PCA Algorithm for Reflectance Estimation from Color Images. Paper presented at the The 19th International Conference on Pattern Recognition (ICPR 2008), Florida.
Matlab, T. M.-P. T. f. (2010). MPT toolbox. from http://control.ee.ethz.ch/overview.en.html
MCSL, Munsell-Color-Science-Laboratory. (2011). CIE standard illuminant data., from http://www.cis.rit.edu/research/mcsl/online/cie.php
Nnocedal, J., & Wright, S. (1999). Numerical optimization: Springer Science.
Romero, J., Garcı́a-Beltrán, A., & Hernández-Andrés, J. (1997). Linear bases for representation of natural and artificial illuminants. Journal of the Optical Society of America A, 14(5), 1007-1014.
Sharma, G., Wu, W., Dalal, E. N. (2005). The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations. Color research and application, 30(1), 21-30.
Shen, H.-L., Cai, P.-Q., Shao, S.-J., & Xin, J. H. (2007). Reflectance reconstruction for multispectral imaging by adaptive Wiener estimation. Journal of the Optical Society of America A, 15(23), 15545-15554.
Shevell, S. K. (2003). The Science of Color (2 ed.): Optical Society of America.
Stokes, M., Anderson, M., Chandrasekar, S., & Motta, R. (1996). Proposal for a standard default color space for the internet—srgb. Paper presented at the Color and imaging conference. http://www. w3. org/Graphics/Color/sRGB
Tzeng, D.-Y., & Berns, R. S. (2005). A Review of Principal Component Analysis and Its Applications to Color Technology. Color research and application, 30(2), 84-98. doi: 10.1002/col.20086
Xu, X. Z. a. H. (2008). Reconstructing spectral reflectance by dividing spectral space and extending the principal components in principal component analysis. Journal of the Optical Society of America A, 25(2), 371-378.
Zhang, W.-F., & Dai, D.-Q. (2008). Spectral reflectance estimation from camera responses by support vector regression and a composite model. Journal of the Optical Society of America A, 25(9), 2286-2296.
呂億德(2009)。自然影像中最佳化物體反射譜估計及其後製應用之研究。未出版之碩士論文論文,國立臺灣師範大學圖文傳播系,臺北市。
汪建志(譯)(2014)。數位色彩工程學(原作者:張小牤)。臺北縣土城市:全華圖書。(原作出版年:2012)。
周遵儒、陳怡君(2008)。快速反射譜模擬方法。「2008色彩學研討會論文集」發表之論文,國際色彩學研討會,中國文化大學。
林瑋如(2013)。以ISRF內插法應用於內插法應用於物體頻譜反射率重建之研究。未出版之碩士論文論文,國立臺灣師範大學圖文傳播系,臺北市。
孫琮傑(2015)。以自然鄰點內插法與頻帶分段線性修正重建物體頻譜反射率之研究。未出版之碩士論文論文,國立臺灣師範大學圖文傳播系,臺北市。
陳鴻興、黃日鋒、詹文鑫、胡國瑞、徐道義、孫沛立、與 羅梅君(2011)。顯示色彩工程學。新北市:全華圖書。
陳鴻興、陳君彥(譯)(2009)。基礎色彩再現工程(原作者:大田登)。臺北縣土城市:全華圖書。(原作出版年:1997)。
羅梅君(2010)。數位色彩管理科學:色彩度量學。臺北市:羅梅君。