簡易檢索 / 詳目顯示

研究生: 湯詠秀
Yung-Hsiu, Tang
論文名稱: 多鐵性 (Bi, Ln)FeO3之結構、磁性及介電性研究
Structural, magnetic and dielectric properties in (Bi, Ln) FeO3 ( Ln = La, Dy) bulks and nanoparticles
指導教授: 林昭吟
Lin, Jau-yn
劉祥麟
Liu, Hsiang-Lin
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 109
中文關鍵詞: 多鐵性鉍鐵氧溶膠凝膠法結構磁性介電性
英文關鍵詞: multiferroics, BiFeO3, sol-gel, structure, magnetism, dielectricity
論文種類: 學術論文
相關次數: 點閱:240下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

多鐵性材料係指在某一種材料中,具有兩種以上耦合鐵的特性,其隨外在環境改變,而產生自發極化滯留現象。由於(反)鐵磁性及(反)鐵電性同時存在於一種材料中,使其材料的物理性質及機制變得相當複雜而有趣。 其中,BiFeO3更因其高於室溫的居里溫度與尼爾溫度,成為應用於日常生活中的最佳材料。
此論文中,我們利用固態反應法合成Bi1-xLnxFeO3 (Ln = La and Dy, x = 0 ~ 0.40)塊材,以及利用溶膠-凝膠法合成Bi1-xDyxFeO3 (x = 0 ~ 0.40)奈米粒子,並且對於這些化合物進行系統化的結構、磁性及介電性質研究。我們發現摻雜鑭、鏑的系列分別在x ≧ 0.15及x ≧ 0.10時,有晶體結構轉變的現象。其中,由於鑭的摻雜,結構由BiFeO3的菱形晶系轉變為近似立方晶系,而鏑的摻雜則使結構轉變為正交晶系。在室溫下,由固態反應法製成的Bi1-xDyxFeO3及Bi1-xLaxFeO3其磁化率隨著摻雜濃度增加而增大。我們認為這個現象因為摻雜鑭系元素後,BiFeO3原有的旋輪線型 (cycloidal) 自旋排列被壓制或是破壞了。另外,摻雜鏑的系列中,x = 0.10 ~ 0.30樣品的介電常數增大至68 ~ 300,我們認為這是由於在結構轉變中,結構不穩定性所造成的。
最後,溶膠-凝膠法合成的Bi1-xDyxFeO3 (x = 0 ~ 0.40) 奈米粒子具有有限的矯完磁場、交換場及細長型的磁滯曲線,我們認為這些樣品的磁性是似超順磁性。我們更發現在樣品的磁性在低溫下(10 K)大為增加,這是因為旋輪線型自旋排列在低溫下成為非簡諧排列。另一方面,我們證明利用溶膠-凝膠法可改善樣品的漏電問題。

Multiferroic bismuth ferrite (BiFeO3) has gained a considerable attention from the aspects of technology and fundamental science due to the coexistence of (anti)ferromagnetic and ferroelectric properties (so called multiferroics), which allows an additional degree of freedom for the design of spintronic devices. Moreover, the high transition temperature of BiFeO3 is the most important advantage for application in practice.
In this master thesis, we prepared series of Bi1-xLnxFeO3 (Ln = La and Dy, x = 0 ~ 0.40) polycrystals by solid state reaction method. Moreover, sol-gel method is used to synthesize pure Bi1-xDyxFeO3 (x = 0 ~ 0.40). Their structural, magnetic and dielectric properties are systematically investigated. The crystal structures start transforming from rhombohedral to cubic ones near x = 0.15 for La-series and to orthorhombic ones near x = 0.10 for Dy-series. For samples prepared by solid state method, it is interesting to find that the room temperature magnetization at 20 kOe (Meff ) for Dy-doped samples are one-order larger compared with that of La-doped samples, which is ascribed to the suppression of cycloidal spin structure. Furthermore, the dielectric constant is enhanced greatly from 68 to 300 with Dy = 0.10 to 0.30, which should be associated with the structural instability during the transformation.
Finally, the grain size of Dy- series prepared by sol-gel method is in nanoscale. Those nanoparticles show the possibility of superparamagnetic behavior due to the finite coercive field (Hc) and exchange bias (He). At low temperature (10 K), the anharmonic cycloidal spin structure is attributed to the larg Meff . The restrained leakage problem in nanoscaled Dy- series proves the ability of sol-gel method to control the leakage problem.

1 Introduction.............................................1 1.1 Overview...............................................1 1.2 Motivation.............................................3 2 Literatural Review.......................................7 3 Experimental technique..................................18 3.1 Sample preparation....................................18 3.1.1 Solid state reaction method.........................18 3.1.2 Sol-gel method......................................20 3.2 Sample characterizations..............................22 3.2.1 Structural analysis.................................22 3.2.2 Magnetic properties.................................24 3.2.3 Dielectric properties...............................25 4 Results and discussion..................................37 4.1 BL(x)FO and BD(x)FO, x = 0 ~ 0.40(solid-state method).37 4.1.1 Structures and morphologies.........................37 4.1.2 Magnetic properties.................................39 4.1.3 Dielectric properties...............................43 4.2 BD(x)FO, x = 0 ~ 0.40 (Sol-gel method)................51 4.2.1 Structures and morphologies.........................51 4.2.2 Magnetic properties.................................52 4.2.3 Dielectric properties...............................54 5 Conclusion..............................................99

[1] H. Schmid, ``Multi-ferroic manetoelectrics", ferroelectrics 162, 317 (1994).
[2] N. A. Hill, ``Why are there so few magnetic ferroelectrics?", J. Phys. Chem. B 24, 6694 (2000).
[3] W. Eerenstein, N. D. Mathur, and J. F. Scott, ``Multiferroic and magnetoelectric materials", Nature 442, 759 (2006).
[4] V. E. Wood, A. E. Austin, in: A. J. Freeman, H. Schmid (Eds.), ``Magnetoelectric interaction phenomena in crystals", Gordon and Breach, London, (1975).
[5] P. Royen and K. Swars, ``Das system bismutoxyd-eisenoxyd in bereich von 0 bis 55 Mol% eisenoxyd", Angew. Chem. 69, 779 (1957).
[6] R. Mazumder, P. Sujatha Devi, Dipten Bhattacharya, P. Choudhury, and A. Sen, ``Ferrpmagnetism in nanoscale BiFeO3", Appl. Phys. Lett. 91, 062510 (2007).
[7] J. F. Scott, ``Applications of modern ferroelectrics", Sci. 315, 954 (2007).
[8] S. K. Singh, H. Ishiwara, and K. Maruyama, ``Room temperature ferroelectric properties of Mn-substituded BiFeO3 thin lm deposited on Pt electrodes using chemical
solution deposition", Appl. Phys. Lett. 88, 262908 (2006).
[9] K. Maruyama, M. Kondo, S. K. Singh, and H. Ishiwara, ``New ferroelectric material for embedded FRAM LSIs", Fujitsu Sci. Tech. J., 43, 502 (2007).
[10] G. L. Yuan, Siu Wing Or, J. M. Liu, and Z. G. Liu, ``Structural transformation and ferroelectromagnetic behavior in single-phase Bi1-xNdxFeO3 multiferroic eramics",
Appl. Phys. Lett. 89, 052905 (2006).
[11] G. L. Yuan, S. W. Or, Y. O. Wang, Z. G. Liu, and J. M. Liu, ``Preparation and multi-properties of insulated single-phase BiFeO3 ceramics", Solid State comm. 138, 76 (2006).
[12] A. K. Pradhan, K. Zhang, J. B. Dadson, and G. B. Loutts, ``Magnetic and electrical properties of single-phase multiferroic BiFeO3", J. Appl. Phys. 97, 093903 (2005).
[13] W. N. Su, D. H. Wang, Q. Q. Cao, Z. D. Han, J. Yin, J. R. Zhang, and Y. W. Du, ``Large polarization and enhanced magnetic properties in BiFeO3 ceramic prepared by high-presure synthesis", Appl. Phys. Lett. 91, 092905 (2007).
[14] J. -C. Chen and J. -M. Wu, ``Dielectric properties and ac conductivities of dense single-phased BiFeO3 ceramics", Appl. Phys. Lett. 91, 182903 (2007).
[15] R. Mazumder, D. Chakravarty, D. Bhattacharya, and A. Sen, ``Spark plasma sintering of BiFeO3", Mat. Res. Bul. 44, 555 (2009).
[16] W. -M. Zhu and Z. -G. Ye, ``Improved dielectric and ferroelectric properties of high Curie temperature (1-x)BiFeO3-xPbTiO3 ceramics by aliovalent ionic substitution",
Appl. Phys. Lett. 89, 232904 (2006).
[17] H. Paik, H. Hwang, K. No, S. Kwon, and David P. Cann, ``Room temperature multiferroic properties of single-phase (Bi0.9La0.1)FeO3-Ba(Fe0.5Nb0.5)FeO3 solid solution ceramics", Appl. Phys. Lett. 90, 042908 (2007).
[18] S. R. Das, R. N. P. Choudhary, P. Bhattacharya, R. S. Katiyar, P. Dutta, A. Manivannan, and M. S. Seehra, ``Structural and multiferroic properties of La-modified
BiFeO3 ceramics", J. Appl. Phys. 101, 034104 (2007).
[19] S. -T. Zang, L.-H. Pang, Y. Zhang, M.-H. Lu, and Y.-F. Chen, ``Preparation, Structures, and Multiferroic properties of single phase Bi1-xLaxFeO3 (x = 0 ~ 0.4) ceramics", J. Appl. Phys. 100, 114108 (2006).
[20] Y. -P. Liu and J. -M. Wu, ``Electric and Magnetic Properties of La- and Pr-modified BiFeO3 ceramics", Elec. Solid State Lett. 10, G39 (2007).
[21] G. L. Yuan and Siu Wing Or, ``Multiferroicity in polarized single-phase Bi0.875Sm0.125FeO3 ceramics", J. Appl. Phys. 100, 024109 (2006).
[22] P. Uniya and K. L. Yadav, ``Study of dielectric, magnetic, and ferroelectric properties in Bi1-xGdxFeO3", Mat. Lett. 62, 2858 (2008).
[23] V. R. Palker, Darshan C. Kudaliya, S. K. Malik, and S. Bhattacharya, ``Magnetoelectricity at room temperature in the Bi0.9-xTbxLa0.1FeO3 system", Phys. Rev. 69, 212102 (2004).
[24] K. Prashanthi, B. A. Chalke, K. C. Barick, A. Das, I. Dhiman, and V. R. Palker, ``Enhancement in multiferroic properties of Bi0.7-xLaxDy0.3FeO3 system with removal of La", Solid State Comm. 149, 188 (2009).
[25] P. Uniyal and K. L. Yadav, ``Observation of the room temperature magnetoelectric effect in Dy doped BiFeO3", J. Phys.: Condens. Matter 21, 012205 (2009).
[26] Z. Yan, K. F. Wang, J. F. Qu, and Y. Wang, ``Processing and properties of Yb-doped BiFeO3 ceramics", Appl. Phys. Lett. 91, 082906 (2007).
[27] J. R. Cheng, N. Li, and L. Eric Cross, ``Structural and dielectric properties of Ga modified BiFeO3-PbTiO3 crystalline solutions", J. Appl. Phys. 94, 5153 (2003).
[28] A. M. Kadomstseva, Y. F. Popov, G. P. Vorob'ev and A. K. Zvezdin, ``Spin density wave and eld induced phase transitions in magnetoelectric antiferromagnets", Phys. B 211, 327 (1995).
[29] F. Chen, Q. F. Zhang, J. H. Li, Y. J. Qi, C. J. Lu, X. B. Chen, X. M. Ren, and Y. Zhao, ``Sol-gel derived multiferroic BiFeO3 ceramics with large polarization and weak ferromagnetism", Appl. Phys. Lett. 89, 092910 (2000).
[30] Y. Wang, G. Xu, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen, and G. Han, ``Mineralizer-assisted hydrothermal synthesis and characterization of BiFeO3 nanoparticles", J. Am. Ceram. Soc. 90, 2615 (2007).
[31] N. Das, R. Majumdar, A. Sen, and H. S. Maiti, ``Nanosized bismuth ferrite powder prepared through sonochemical and microemulsion techniques", Mat. Lett. 61, 2100 (2007).
[32] J. K. Kim, S. S. Kim, and W. J. Kim, ``Sol-gel synthesis and properties of multiferroic BiFeO3", Mat. Lett. 59, 4006 (2005).
[33] M. Popa, D. Crespo, and J. M. Calderon-Moreno, ``Synthesis and structural characterization of single-phase BiFeO3 powders from a polymeric precursor", J. Am. Ceram. Soc. 90, 2723 (2007).
[34] M. Kumar, K. L. Yadav, and G. D. Varma, ``Large magnetization and weak polarization in sol-gel derived BiFeO3 ceramics", Mat. Lett. 62, 1159 (2008).
[35] T. T. Carvalho and P. B. Tavares, ``Synthesis and thermodynamic stability of multiferroic BiFeO3", Mat. Lett. 62, 3984 (2008).
[36] Kiselev, ``Das system bismutoxyd-eisenoxyd in bereich von 0 bis 55 Mol% eisenoxyd", Sov. Phys. -Dokl. 7, 742 (1963).
[37] James R. Teague, R. Gerson, and W. J. James, ``Dielectric hysteresis in single crystal BiFeO3", Soli. State Comm. 8, 1073 (1970).
[38] Yu. E. Roginskaya, Yu. Ya. Tomashpol'skii, Yu. N. Venetsev, V. M. Petrov, and G. S. Zhdanov, ``The nature of the dielectric and magnetic properties of BiFeO3", Sov. Phys. -JETP 23, 47 (1966).
[39] P. Ravindran, R. Vidya, A. Kjekshus, and H. Fjellvag, ``Theoretical investigation of magnetoelectric behavior in BiFeO3", Phys. Rev. B 74, 224412 (2006).
[40] I. Sosnowska, T Peterlin-Neumaier, and E Steichele, ``Spiral magnetic ordering in bismuth ferrite", J. Phys. C: Solid St. Phys. 15, 4835 (1982).
[41] B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, and V. I. Belotelov, ``Magnetic-Field-induced phase transition in BiFeO3 observed by high- eld electron spin resonance: Cycloidal to homogeneous spin order", Phys. Rev. B 69, 064114 (2004).
[42] I. Sosnowska and A. K. Zvezdin, ``Origin of the long period magnetic ordering in BiFeO3", J. Mag. Mag. Mat. 140-144, 167 (1995).
[43] A. V. Zalesskii, A. K. Zvezdin, A. A. Frolov, and A. A. Bush, ``57Fe NMR study of a spatially modulated magnetic structure in BiFeO3", JETP Lett. 71, 465 (2000).
[44] J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, ``Firstprinciples study of spontaneous polarization in multiferroic BiFeO3", Phys. Rev. B 71, 014113 (2005).
[45] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Vaghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, ``Epitaxial BiFeO3 multiferroic thin film heterostructures", Sci. 299, 1719 (2003).
[46] Y. -H. Lee, J. -M. Wu, and C. H. Lai, ``Influence of La dopping in multiferroic properties of BiFeO3 thin film", Appl. Phys. Lett. 88, 042903 (2006).
[47] Y. Wang and C. -W. Nan, ``Effect of Tb doping on electric and magnetic behavior of BiFeO3 thin film", J. Appl. Phys. 103, 024103 (2008).
[48] K. Y. Yun, M. Noda, M. Okuyama, H. Saeki, H. Tabata, and K. Saito, ``Structural and multiferroic properties of BiFeO3 thin film at room temperature", J. Appl. Phys. 96, 3399 (2004).
[49] S. Y. Yang, F. Zavaliche, L. M. -Ardabili, V. Vaithyanathan, D. G. Schlom, Y. J. Lee, Y. H. Chu, M. P. Cruz, Q. Zhan, T. Zhao, and R. Ramesh, ``Metalorganic chemical vapor deposition of lead-free ferroelectric BiFeO3 films for memory applications", Appl. Phys. Lett. 87, 102903 (2005).
[50] S. T. Zhang, M. H. Lu, D. Wu, Y. F. Chen, and N. B. Ming, ``Larger polarization and weak ferromagnetism in quenched BiFeO3 ceramics with a distorted rhombohedral crystal structure", Appl. Phys. Lett. 87, 262907 (2005).
[51] Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. -M. Liu, and Z. G. Liu, ``Room temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by
rapid liquid phase sintering", Appl. Phys. Lett. 84, 1731(2004).
[52] Y. F. Popov and A. K. Zvezdin, ``Linear magnetoelectric effect and phase transitions in bismuth ferrite, BiFeO3", JETP Lett. 57, 69 (1993).
[53] Alain C. Pierre, ``Introuduction to sol-gel processing", KAP, Boston, (1998).
[54] Hiemenz P. C., ``Principles of colloid and surface chemistry", Marcel Dekker, New York, (1977).
[55] C. Kittel, ``Introduction to solid state physics", Wiley, Hoboken, (1998).
[56] Y.-H. Lin, Q. Jiang, Y. Wang, C. -W. Nan, L. Chen, and J. Yu, ``Enhancement of ferromagnetic properties in BiFeO3 polycrystalline ceramic by La doping", Appl. Phys. Lett. 90, 172507 (2007).
[57] N. Wang, J. Cheng, A. Pyatokov, A. K. Zvezdin, J. F. Li, L. E. Cross, and D. Viehland, ``Multiferroic properties of modified BiFeO3-PbTiO3-based ceramics: Random- field induced release of latent magnetization and polarization", Phys. Rev. B 72, 104434 (2005).
[58] A. Sparavigna and A. Strigazzi, ``Electric-field effects on the spin-density wave in magnetic ferroelectrics", Phys. Rev. B 50, 2953 (1994).
[59] W. H. Meiklejohn and C. P. Bean, ``New Magnetic Anisotropy", Phys. Rev. 102, 1413 (1956).
[60] M. Kiwi, Jose Mejia-Lopez, R. D. Portugal, and R. Ramirez, ``Positvie exchage bias model: Fe/FeF2 and Fe/MnF2 bilayers", Solid State Com. 116, 315 (2000).
[61] J. Liu, C. D., W. N. Mei, R. W. Smith, and J. R. Hardy, ``Dielectric properties and Maxwell-Wagner relaxation of compounds ACu3Ti4O12 (A = Ca, Bi2=3, Y2=3, La2=3)", J. Appl. Phys. 98, 093703 (2005).
[62] Wei Li and Robert W. Schwartz, ``Maxwell-Wagner relaxations and their contributions to the high permittivity of calcium copper titanate ceramics", Phys. Rev. B 75, 012104 (2007).
[63] K.S. Cole and R.H. Cole, ``Dispersion and absorption in dielectrics I. Alternating current characteristics", J. Chem. Phys., 9 341, (1941).
[64] E. Barsoukov and J. R. Macdonald, ``Impedance Spectroscopy", Wiley, New York, (1987).
[65] T.-J. Park, G. C. Papaefthymiou, A. J Viescas, A. R. Moodenbaugh, and S. S. Wong, ``Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles", Nano letters 7, 766 (2007).
[66] B. F. Gao, X. Chen, K. Yin, S. Dong, Z. Ren, F. Yuan, T. Yu, Z. Zou, and J. -M. Liu, ``Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles", Advanced materials 19, 2889 (2007).
[67] Manoj K singh, W. Prellier, M. P. Singh, Ram S. Katiyar, and J. F. Scott, ``Spin-glass transition in single-crystal BiFeO3", Phys. Rev. B 77, 144403 (2008).
[68] F. Gao, Y. Yuan, K. F. Wang, X. Y. Chen, and J. -M. Liu, ``Preparation and photosorption characterization of BiFeO3 nanowires", Appl. Phys. Lett. 89, 102506 (2006).

QR CODE