研究生: |
范功達 Gong Da Fan |
---|---|
論文名稱: |
超精密定位平台撓性結構之研究 A study on Flexible Structure Design of Ultra-precision Positioning Platform |
指導教授: |
屠名正
Twu, Ming-Jenq |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 精密定位平台 、撓性結構 、田口方法 、有限元素分析 |
英文關鍵詞: | Precision positioning platform, Flexible structure, Taguchui method, Finite element method |
論文種類: | 學術論文 |
相關次數: | 點閱:293 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
現今位移平台大部分以四組壓電塊控制三個自由度較為廣泛,若減少一組壓電塊來控制三個自由度且不降低原有功能,必能減少成本開銷,故本研究以一組壓電塊控制一軸自由度為目標,且參考各類之論文不難發現以旋轉定位平台幾乎都是使用兩組壓電塊來達成旋轉定位平台之功能。故本研究以旋轉定位平台之分析為主軸,是以槓桿原理固定端與施力端來設計旋轉定位平台,施加電壓於壓電材料使旋轉定位平台之結構變形產生位移,並用田口方法決定位移平台最佳尺寸達成定位精度。
本研究將奈米定位平台的分析與設計結果應用於光學領域上。用田口式和有限元素分析來得之設計尺寸,實作出旋轉定位平台,並以兩種方式搭配作檢測:
1.給予某一定電壓,使壓電塊產生形變,將感測信號傳至回饋式功率放大器,從而得知所產生的位移。
2.藉由麥克森干涉系統以干涉條紋可以得知位移量。
檢測結果與模擬數據吻合。
關鍵詞:精密定位平台,撓性結構、田口方法、有限元素分析。
Abstract
In general, positioning platform with three degrees of freedom utilizes four piezoelectric pieces to achieve its motion control. The reduction of the number of piezoelectric pieces will decrease the costs dramatically. This study aims at the design and analysis of flexible structure of positioning platform with lesser number of piezoelectric pieces to give the rotation capability. In this study, the level principle is used to design a rotating mechanism in positioning platform. The deformation of flexible structure caused by piezoelectric pieces due to applied voltage gives rotating motion. The stress and deformation of positioning platform for different designs are analyzed by method of finite element, then Taguchi method is used to choose the optimal size of platform to achieve the desired displacement accuracy.
The results of design study are applied to implement a rotating positioning platform used in optics field. The performance is examined by two ways:
1.For a given voltage, the deformation of piezoelectric block is sensed and its signals are transmitted back to get the displacement.
2. McKesson interference system to measure the displacement
The test results coincide with the simulation data within acceptable range.
.
Keywords:Precision positioning platform, Flexible structure, Taguchui method, Finite element method.
參考文獻
[1] 張昫揚,“長行程奈米定位系統研究”,國立中興大學機械工程研究所2002年,8月。
[2] F.E. Scire and E.C. Teaque, “Piezodriven 50-um Range Stage with Subnanometer Resolution”, Rex. Sci. Instrum, Vol. 49, No. 12, December, 1987, pp. 1735-1740.
[3] M.J. Turner, R.W. Clough, H.C. Martin, and L.J. Topp, “Stiffness and Deflection Analysis of Complex Structures”, Journal Aeronautical Science, 1956, Vol. 23, pp. 805-824.
[4] R.J. Melosh, “Basis for Derivation of Matrices for the Direct Stiffness Method”, Journal American Institute for Aeronautics and Astronautics, 1965, Vol. 1, pp. 1631-37.
[5] B.A. Szabo, and G.C. Lee, “Derivation of Stiffness Matrices for Problems in Plane Elasticity by Galerkin’s Method”, International Journal of Numerical Methods in Engineering, 1969, Vol. 1, pp. 301-310.
[6] O.C. Zienkiewicz, “Finite Element Method in Engineering Science”, McGraw-Hill, London, 1971, pp.521.
[7] ANSYS Release 9.0 Documentation.
[8] 蘇穎香,“應用最佳化設計系統於板、殼結構”,國立台灣大學土木工程學研究所,2006。
[9] 李輝煌,“田口方法-品質設計的原理與實務”,高立圖書有限公司,2006。
[10] 張仲卿,“逆向工程技術及整合應用”,高立圖書有限公司,2004。
[11] 游鴻修,“奈米定位平台系統鑑別之探討”,機械工業雜誌255期,2004。
[12] Z.P. Zhang, C.H. Menq, Member, “Six-Axis Magnetic Levitation and Motion Control” IEEE, 2007, pp. 196-205.
[13] Y.T. Liu and C.K. Wang, “A miniaturized rotational precision positioning stage” IEEE, 2005, pp. 307-312.
[14] 游積富,“氣靜壓超精密定位平台之驅動系統配置及其微觀動態特性研究”,國立淡江大學機電工程學系,2004年,6月。
[15] 陳威帆,“平面微型撓性縮放儀機構設計之研究”,國立中山大學機械與機電工程研究所,2005年,7月。
[16] S.H. Chang, C.K. Tseng, and H.C. Chien, “An Ultra-Precision XY Z Piezo-Micropositioner Part II: Experiment and Performance” IEEE, 2005, pp. 307-312.
[17] http://www.phy.ncu.edu.tw/notes/down/michelson/