研究生: |
郭景隆 Guo, Jing-Long |
---|---|
論文名稱: |
兩性共聚物:合成以及對水泥砂漿中氧化石墨烯分散性之影響 Amphoteric Copolymer: Synthesis and Its Effect on the Dispersibility of Graphene Oxide in Mortars |
指導教授: |
許貫中
Hsu, Kung-Chung 呂家榮 Lu, Chia-Jung |
口試委員: |
許貫中
Hsu, Kung-Chung 呂家榮 Lu, Chia-Jung 黃中和 Huang, Chung-Ho 王曄 Wang, Yeh |
口試日期: | 2022/09/19 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 兩性共聚物 、合成 、氧化石墨烯 、分散 、水泥砂漿 、抗壓強度 |
英文關鍵詞: | amphoteric copolymer, synthesis, graphene oxide, dispersion, cement mortar, compressive strength |
研究方法: | 實驗設計法 、 比較研究 、 觀察研究 、 文件分析法 、 現象分析 、 內容分析法 |
DOI URL: | http://doi.org/10.6345/NTNU202201549 |
論文種類: | 學術論文 |
相關次數: | 點閱:90 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文的研究主要為合成出一種羧酸系兩性離子型共聚物PD (單(5-氨基-2-(1-(2-((羧甲基)二甲基氨基)乙氧基)-1-氧代丙烷-2-基)-4-甲基-5-氧代戊酸酯)二鈉),用來改善氧化石墨烯在水泥砂漿中的分散,提升試體的抗壓強度。實驗過程中使用馬來酸酐和DMEA(N,N-二甲基乙醇胺)合成DME(二甲基胺乙基氧羰基丙烯酸),然後再與氯丁酸鈉鹽反應得到單體DCA(N,N-二甲基((羧酸)丙烯醯氧基乙基)乙酸鈉),最後使用過硫酸銨為起始劑,與不同比例的丙烯醯胺(AM)經由自由基聚合反應合成得到共聚物PD,經由FTIR和1H-NMR光譜鑑定共聚物的分子結構,並以GPC/SEC測得其分子量。另外,使用modified Hummers法將石墨烯氧化成氧化石墨烯(GO)。
將PD加入含GOA的人工孔隙溶液中,透過沉降體積試驗、黏度實驗、粒徑分布與界達電位的測試,探討PD對於GO在人工孔隙溶液中的分散效果。測試結果顯示, GO在人工孔隙溶液中的沉降時間隨著PD之AM/DCA比例的增加,呈現先增後減的趨勢。其中PD在AM/DCA=5時有最長的沉降時間;此外,GO在溶液中的沉降時間隨著PD分子量的上升或添加量的增加,呈現先增後減之趨勢。其中以添加10wt% PD15b時,GO在溶液中的沉降時間為最長,達到45小時,此時溶液的黏度為最低(3.08 mPa‧s),溶液中GO的D50粒徑為最小、界達電位之負值為最大,分別為127 nm和-25.5 mV,亦即在所合成的共聚物中以PD15b(AM/DCA=5, M̅n=1.8×104)對於氧化石墨烯在孔隙溶液中有最好的分散效果。將PD15b加入含GOA的水泥砂漿中,進行抗壓強度測試,發現添加10wt% PD15b與0.05wt% GOA的砂漿試體,在28天的抗壓強度為34.6 MPa,與未添加GOA、共聚物的控制組相比提升了52.4%。
This thesis is to synthesize a zwitterionic carboxylate copolymer PD(mono(5-amino-2-(1-(2-((carboxylatomethyl)dimethylammonio)ethoxy)-1-oxopropan-2-yl)-4-methyl-5-oxopentanoate)) as a dispersant to improve the dispersion of graphene oxide(GO)in cement mortars and to promote the compressive strength of the cement-based materials.
Experimentally, maleic anhydride and DMEA(N,N-dimethylethanolamine) was used to synthesize DME(3-((2-(dimethylamino)ethoxy)carbonyl)acrylic acid).
Then, DME was reacted with 4-chlorobutyrate to obtain the monomer DCA (N,N-dimethyl(3-β-(carboxylate) acryloyl oxyethyl) ethanoate). Thereafter, PD copolymer was prepared from DCA and acrylamide(AM) through free radical polymerization by using ammonium persulphate as an initiator. FT-IR and 1H-NMR were used to identify the structure of PD, and GPC/SEC was used to determine the molecule weight of the prepared polymer. Besides, GOA was prepared from graphene using the modified Hummers method.The dispersion property of GOA in the artificial pore solution with PD was evaluated through the sedimentation test, viscosity measurements, size distribution and zeta potential test. The results indicated the sedimentation time of GO in the artificial pore solution increased with AM/DCA ratio of polymer first, reached a maximum value at AM/DCA=5, and then decreased afterwards. The sedimentation time of GO in the pore solution also increased first,reached a maximum value at M̅n=1.8×104, and then decreased afterwards. Namely, PD15b which has AM/DCA=5 and M̅n=1.8×104 showed the best performance.
GO in the pore solution with 10 wt% PD15b was found to exhibit the longest sedimentation time, the lowest viscosity, the smallest particle size and highest absolute value of zeta potential of GO, which is 45 hours, 3.08 mPa·s, 127 nm, and -25.5 mV, respectively. Finally, the measured compressive strength of mortar with 0.05wt% GOA and 10wt% PD15b at 28days were 34.6MPa, which were 52.4% increased relative to the mortar without any dispersant or GOA present.
1.Sheikh, T. M., Anwar, M. P., Muthoosamy, K., Jaganathan, J., Andy Chan, A., Abdullahi Ali Mohamed, A. A., The mechanics of carbon-based nanomaterials as cement reinforcement — A critical review, Construction and Building Materials, 303, 2021, 1-21.
2.Liu, C., Huang, X., Wu, Y. Y., Deng, X., Zeng, Z., Xu, Z., Hui, D., Advance on the dispersion treatment of graphene oxide and the graphene oxide modified cement-based materials, Nanotechnology Reviews, 10, 2021, 34-49.
3.Wang, X., Dong, S., Ashour, A., Zhang, W., Han, B., Effect and mechanisms of nanomaterials on interface between aggregates and cement mortars, Construction and Building Materials, 240, 2020, 1-17.
4.Chintalapudi, K., Pannem, R. M. R., An intense review on the performance of Graphene Oxide and reduced Graphene Oxide in an admixed cement system, Construction and Building Materials, 259, 2020, 1-19.
5.Anwar, A., Mohammed, B. S., Wahab, M. A., Liew, M. S., Enhanced properties of cementitious composite tailored with graphene oxide nanomaterial - A review, Developments in the Built Environment, 1, 2020, 1-21.
6.Shamsaei, E., Souza, F. B., Yao, X., Benhelal, E., Akbari, A., Duan, W., Graphene-based nanosheets for stronger and more durable concrete: A review, Construction and Building Materials, 183, 2018, 642-660.
7.Lu, L., Zhao, P., Lu, Z., A short discussion on how to effectively use graphene oxide to reinforce cementitious composites, Construction and Building Materials, 189, 2018, 33-41.
8.葛敬, 兩性分散劑的合成以及對於氧化石墨烯砂漿性質的影響, 國立臺灣師範大學化學系, 台北市. 2019, 101.
9.Daniel, R. D., Sungjin, P., Christopher, W. B., Rodney, S. R., The chemistry of graphene oxide, Chemical Society Reviews, 39, 2010, 228-240.
10.Dreyer, D. R., Ruoff, R. S., Bielawski, C. W., From conception to realization: an historial account of graphene and some perspectives for its future, Angewandte Chemie - International Edition, 49, 2010, 9336-9344.
11.Compton, O. C., Nguyen, S. T., Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials, Small, 6, 2010, 711-723.
12.Smith, A. T., LaChance, A. M., Zeng, S. Liu, B., Sun, L., Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and theirnanocomposites, Nano Materials Science, 1, 2019, 31-47.
13.Wang, Q., Li, S., Pan, S., Cui, X., Corr, D. J., Shah, S. P., Effect of graphene oxide on the hydration and microstructure of fly ash-cement system, Construction and Building Materials, 198, 2019, 106-119.
14.Dunuweera, S. P., Rajapakse, R. M. G., Cement Types, Composition, Uses and Advantages of Nanocement, Environmental Impact on Cement Production, and Possible Solutions, Advances in Materials Science and Engineering, 2018, 2018, 1-12.
15.Aïtcin, P. C., Flatt, R. J., Portland cement, Science and Technology of Concrete Admixtures, 2016, 27-51.
16.Marchon, D., Flatt R. J., Mechanisms of cement hydration, Science and Technology of Concrete Admixtures, 2016, 129-145.
17.Jolicoeur, C., Simard, M. A., Chemical admixture-cement interactions Phenomenology and physico-chemical concepts, Cement and Concrete composites, 20, 1998, 87-101.
18.Zhang, H., Ji, T., Liu, H., Performance evolution of the interfacial transition zone (ITZ) in recycled aggregate concrete under external sulfate attacks and dry-wet cycling, Construction and Building Materials, 229, 2019, 1-18.
19.An, J., McInnis, M., Chung, W., Nam, B. H., Feasibility of Using Graphene Oxide Nanoflake (GONF) as Additive of Cement Composite, Applied Sciences(Switzerland), 8, 2018, 1-13.
20.Wnag, Q., Qi, G., Zhan, D., Wang, Y., Zheng, H., Influence of the molecular structure of a polycarboxylate superplasticiser on the dispersion of graphene oxide in cement pore solutions and cement-based composites, Construction and Building Materials, 272, 2021, 1-14.
21.Pirrung, F. O. H., Quednau, P. H., Auschra, C., Wetting and dispersing agents, CHIMIA, 56, 2002, 170-176.
22.Abd El-Wahab, H., Nasser, A. M., Abd ElBary, H. M., Abd Elrahman, M., Hassanein, M., Effect of the modified dispersing agent and milling time on the properties and particle size distribution of inkjet ink formulation for textile printing, Pigment and Resin Technology, 50, 2020, 356-366.
23.Ohshima, H., Approximate analytic expression for the stability ratio of colloidal dispersions, Colloid and Polymer Science, 292, 2014, 2269-2274.
24.Hagendorfer, H., New Analytical Methods for Size Fractionated, Quantitative, and Element Specific Analysis of Metallic Engineered Nanoparticles in Aerosols and Dispersions, ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, Lausanne, EPFL, 2011, 179.
25.Shah, S. N. R., Aslam, M., Shah, S. A., Raja, O., Behaviour of Normal Concrete Using Superplasticizer under Different Curing Regimes, Pakistan Journal of Engineering and Applied Sciences, 15, 2014, 87-94.
26.Zhao, L., Guo, X., Liu, Y., Ge, C., Chen, Z., Guo, L., Shu, X., Liu, J., Investigation of dispersion behavior of GO modified by different water reducing agents in cement pore solution, Carbon, 127, 2018, 255-269.
27.Jing, G. J., Ye, Z. M., Lu, X. L., Wu, J. M., Wang, S. X., Cheng, X., Incorporating graphene oxide into lime solution: A study of flocculation and corresponding improvement, Materiales de Construcción, 68, 2018, 1-9.
28.Kubens, S., Interaction of cement and admixtures and its fluence on rheological peoperties, Cuvillier Verlag, 752, 2010, 38-45.
29.Uchikawa, H., Hanehara, S., Sawaki, D., The role of steric repulsive force in the dispersion of cement particles in fresh paste prepared with organic admixture, Cement and Concrete Research, 27, 1997, 37-50.
30.Gelardi, G., Flatt, R. J., Working mechanisms of water reducers and superplasticizers, Science and Technology of Concrete Admixtures, 2016, 257-278.
31.Dengiz Özcan, E., Çinku, K., Özdamar, Ş., Ergin, H., Özkan, Ş. G., Investigation of the effect of polymer‐based novel grinding aids on cement grinding efficiency, Journal of Applied Polymer Science, 139, 2022, 1-11.
32.Narasimharao, K., Venkata, R. G., Sreedhar, D., Vasudevarao, V., Synthesis of Graphene Oxide by Modified Hummers Method and Hydrothermal Synthesis of Graphene-NiO Nano Composite for Supercapacitor Application, Journal of Material Science & Engineering, 5, 2016, 1-4.
33.Pu, Z., Fan, X., Su, J., Zhu, M., Jiang, Z., Aqueous dispersing mechanism study of nonionic polymeric dispersant for organic pigments, Colloid and Polymer Science, 300, 2022, 167-176.
34.Panowicz, R., Miedzinska, D., Pałka, N., Niezgoda, T., The initial results of THz spectroscopy non-destructive investigations of epoxy-glass composite structure, Computer Methods in Mechanics, 9, 2011, 1-6.
35.Puiseux, T., Sewonu, A., Moreno, R., Mendez, S., Nicoud, F., Numerical simulation of time-resolved 3D phase-contrast magnetic resonance imaging, PLoS One, 16, 2021, 1-32.
36.Tian, Q., Zhang, Q., Synthesis and performance of sodium salt of MAA/St/SAS copolymer dispersant, IOP Conference Series: Earth and Environmental Science, 310, 2019, 1-7.
37.Ma, J., Sun, G., Sun, D., Yu, F., Hu, M., Lu, T., Application of gel permeation chromatography technology in asphalt materials: A review, Construction and Building Materials, 278, 2021, 1-17.
38.Zhang, J., Huang, F., Chen, X., Zhong, K., Xu, H., Dispersing Effect of Core Cross-linked Star Polycarboxylate Superplasticizers on the Cement Paste, E3S Web of Conferences, 283, 2021, 1-4.
39.Behrouzi, K., Fard, M. V., Raeiszadeh, A., Faeghi nia, A., Water Recycling at Processing Plants in Water Scarce Regions a Case Study of Thickener Design for the Mansour Abad Processing Plant, Tailings and Mine Waste Conference, 2011, 1-12.
40.Zhai, C., Niu, Y., Liu, J., Yang, T., Effect of octadecylamine polyoxyethylene ether on the adsorption feature of sodium polystyrene sulfonate on the SiC surface and the relevant dispersion stability of slurry, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 633, 2022, 1-11.
41.Shimada, H., Hamanaka, A., Sasakoa, T., Matsui, K., Behaviour of grouting material used for floor reinforcement in underground mines, International Journal of Mining, Reclamation and Environment, 28, 2013, 133-148.
42.Rudyak, V. Y., Minakov, A. V., Pryazhnikov, M. I., Preparation, characterization, and viscosity studding the single-walled carbon nanotube nanofluids, Journal of Molecular Liquids, 329, 2021, 1-10.
43.Kwan, T. O. C., Reis, R., Siligardi, G., Hussain, R., Cheruvara, H., Moraes, I., Selection of Biophysical Methods for Characterisation of Membrane Proteins, International journal of molecular sciences, 20, 2019, 1-26.
44.Bhattacharjee, S., DLS and zeta potential - What they are and what they are not?, Journal of Controlled Release, 235, 2016, 337-351.
45.Nikolova, M. P., Bayryamov, S., A REVIEW OF METHODS AND TECHNIQUES FOR CHARACTERIZATION OF STRUCTURE, MORPHOLOGY AND DISPERSION STABILITY OF MICROCAPSULES, Proceedings of University of Ruse, 58, 2019, 57-63.
46.Tang, C. Y., Fu, Q. S., Robertson, A. P., Criddle, C. S., Leckie, J. O., Use of Reverse Osmosis Membranes to Remove Perfluorooctane Sulfonate (PFOS) from Semiconductor Wastewater, Environmental Science and Technology, 40, 2006, 7343-7349.
47.ASTM C109, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), ASTM International, West Conshohocken, PA, 19428-2959, 2016, 1-6.