簡易檢索 / 詳目顯示

研究生: 蔡達忠
Ta-Chung Tsai
論文名稱: Nd: YAG雷射對Ti-6Al-4V薄板接合機械性質之研究
The study of Mechanical Properties for Ti-6Al-4V Sheet metal joining to use Nd: YAG laser
指導教授: 鄭慶民
Cheng, Ching-Min
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 72
中文關鍵詞: 釹-釔石榴石雷射鈦-6鋁-4釩機械性質
英文關鍵詞: Nd: YAG laser, Ti-6Al-4V, Mechanical Properties
論文種類: 學術論文
相關次數: 點閱:215下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用脈衝式Nd: YAG雷射對Ti-6Al-4V鈦合金1mm薄板進行雷射銲接,不加填料進行對接,銲前必須清除試片上氧化物,避免雷射反彈而無法銲接,也可避免產生化合物於銲道中,而產生氣孔。以單道雷射銲接與雙面雷射銲接為主要銲接方式,過程中以惰性氣體氬氣為保護氣體,以避免鈦的高溫活性高,產生淡藍色的氧化現象,研究出以銲接功率40W以下,雙面雷射銲接為最佳銲接方式,利用脈衝式Nd: YAG雷射的波形設定、脈衝寬度、功率、頻率、峰值功率、銲接走速參數設定來研究薄板接合機械性質變化,以金相觀察、微硬度分析、拉伸試驗、SEM分析為主要目標,得到以下幾點結論。

    1.使用脈衝式Nd: YAG雷射低功率對1mm薄板接合,雙面雷射銲接優於單道雷射銲接。
    2.經過雷射銲接後銲道硬度大於熱影響區與母材。
    3.雙面雷射銲接抗拉強度優於單道雷射銲接。
    4.保護氣體可保避免鈦合金產生氧化現象。
    5.波型設定為漸升波為佳。
    6.低功率Nd: YAG雷射可避免鈦合金最主要的缺陷銲蝕產生。
    7.經過雷射銲接後,母材可發現α相與β相,熱影響區可發現針狀麻田散體的α’-Ti、針狀α-Ti、α-Ti組織、殘留β-Ti,銲道主要發現針狀麻田散體的α’-Ti組織。

    The purpose of this study pulse Nd: YAG welds Ti-6Al-4V titanium alloy 1mm sheet metal to use laser welding, does not add the filler metal and carry on butt joint, must clean oxide , prevent from laser to it rebounds to be but unable to weld, and prevent pollution from fusion zone, and produced the porosity. The single way weld and double way welds is welding method of master ,regard inert gas argon as and protect the gas in the course, in order to prevent the high-temperature activity of the titanium from being high, produce the light blue phenomenon of oxidizing, work out to weld the low power 40W, double way welds is the best method, use pulse Nd: YAG laser wave form set up, pulse width, power, frequency, peak value power, weld walk speed parameter set up to study sheet metal joint mechanical property change, observe with the micristructure, little hardness analysis, tensile test, SEM analyze for the main goal, get some following conclusions.

    1. Use pulse Nd: YAG laser low power, to 1mm sheet metal joint, double way welds is superior to the single way weld .
    2. After laser welding, fusion zone a hardness and greater than heat-affect zone and base metal .
    3. Tensile strength of double way welds is superior to the single way weld .
    4. Protect gas can prevent the alloy of titanium producing the oxidize the phenomenon
    5. Wave type set up for rise wave as good gradually.
    6. Low power Nd: YAG laser defect that can prevent the alloy of titanium from being main undercut.
    7. After laser welding, base metal can find α phase and β phase, heat-affected zone can find the needle-like martensite α’-Ti, acicular α-Ti, α-Ti, retained β, fusion zone find the needle-like martensite α’-Ti

    謝誌……………………………………………………………………I 中文摘要………………………………………………………………II 英文摘要………………………………………………………………III 總目錄 ……………………………………………………………V 表目錄…………………………………………………………………VII 圖目錄…………………………………………………………………VIII 第一章 緒論…………………………………………………………1 第一節 研究緣起……………………………………………………1 第二節 研究動機……………………………………………………4 第三節 研究目的……………………………………………………5 第二章 文獻探討……………………………………………………6 第一節 鈦合金簡介…………………………………………………6 第二節 溶質原子對鈦合金的影響…………………………………11 第三節 鈦合金的應用 …………………………………………… 13 第四節 雷射種類與鈦合金種類……………………………………15 第三章 實驗設備與方法……………………………………………28 第一節 實驗設備與材料……………………………………………28 第二節 實驗設定流程………………………………………………32 第三節 金相顯微組織觀察…………………………………………33 第四節 微硬度試驗…………………………………………………35 第五節 拉伸試驗……………………………………………………37 第六節 SEM觀察與EDS分析…………………………………………39 第四章 實驗結果與討論……………………………………………41 第一節 金相組織分析 …………………………………………… 41 第二節 拉伸試驗 ………………………………………………… 48 第三節 微硬度試驗…………………………………………………56 第四節 SEM與EDS分析………………………………………………60 第五章 結論與建議…………………………………………………69 第一節 結論…………………………………………………………69 第二節 建議…………………………………………………………69 參考文獻………………………………………………………………70 表2-1 ASTM對Ti-6Al-4V成分之規範………………………………10 表2-2 鈦合金的銲接性…………………………………………… 10 表2-3 合金元素對鈦合金相的影響……………………………… 12 表2-4 各種光源的頻率與波長…………………………………… 16 表2-5 Nd: YAG與CO2雷射差異比較……………………………… 17 表2-6 雷射銲接與各種銲接之比較……………………………… 17 表2-7 各種鈦合金銲件拉伸結果………………………………… 20 表3-1  Ti-6V-4V成份………………………………………………30 表3-2  Ti-6Al-4V鈦合金特性圖………………………………… 30 表4-1 雷射銲接參數……………………………………………… 41 表4-2 雷射銲接參數 ………………………………………………45 表4-3 實驗一雷射銲接參數表…………………………………… 48 表4-4 有無保護氣體試片之抗拉強度表………………………… 48 表4-5 實驗二雷射銲接參數表…………………………………… 49 表4-6 不同功率試片抗拉強度表………………………………… 50 表4-7 實驗三雷射銲接參數表…………………………………… 53 表4-8 不同波形試片抗拉強度表………………………………… 53 表4-9 不同脈衝寬度抗拉強度表………………………………… 54 圖 1-1 鈦合金在各產業之應用……………………………………2 圖 1-2 鈦合金外殼數位相機………………………………………3 圖 2-1 鈦及鈦合金之製程簡介……………………………………7 圖 2-2 海綿鈦生產流程圖…………………………………………8 圖 2-3 鈦合金相圖與溶質原子之關係圖…………………………12 圖 2-4 雷射光於Keyhole 內發生的多重反射……………………18 圖 2-5 銲道左右兩側較低處為銲蝕………………………………19 圖 2-6 雷射銲接正面………………………………………………20 圖 2-7 雷射銲接側面………………………………………………20 圖 2-8 雷射銲接+TIG正面…………………………………………21 圖 2-9 雷射銲接+TIG側面…………………………………………21 圖 2-10 抗拉強度/冷卻速率圖……………………………………23 圖 2-11 伸長量/冷卻速率圖……………………………………… 23 圖 2-12 波形圖…………………………………………………… 25 圖 2-13 硬度/聚焦直徑圖…………………………………………26 圖 2-14 滲透深度/銲點直徑圖……………………………………26 圖 2-15 fluence(每平方公分焦耳)/銲點直徑圖……………… 27 圖 3-1 FANUC Robot LR Mate Ib 六軸機械手臂………………28 圖 3-2 Nd: YAG脈衝式雷射銲接機………………………………29 圖 3-3 模具正面……………………………………………………30 圖 3-4 模具背面……………………………………………………31 圖 3-5 流程圖………………………………………………………32 圖 3-6 慢速鑚石切割機……………………………………………33 圖 3-7 Olympus BH 型光學顯微鏡觀…………………………… 34 圖 3-8 Future-Tech,FM-700型微硬度試驗機………………… 36 圖 3-9 拉伸試片……………………………………………………37 圖 3-10 微電腦萬能材料試驗機………………………………… 38 圖 3-11 JEOL JSM6360 電子顯微鏡與Oxford的EDS的系統…… 39 圖 3-12 薄膜蒸鍍試驗機………………………………………… 40 圖 4-1 母材金相圖…………………………………………………42 圖 4-2 熱影響區金相圖……………………………………………42 圖 4-3 銲道金相圖…………………………………………………43 圖 4-4 銲道底部圖…………………………………………………43 圖 4-5 銲道中間圖…………………………………………………44 圖 4-6 銲道頂部圖…………………………………………………44 圖 4-7 銲道巨觀圖…………………………………………………45 圖 4-8 銲道巨觀圖…………………………………………………46 圖 4-9 底部氣孔圖…………………………………………………46 圖 4-10 底部氣孔圖……………………………………………… 47 圖 4-11 鈦合金氧化圖…………………………………………… 49 圖 4-12 脈衝式Nd: YAG雷射波形示意圖…………………………51 圖 4-13 方波波型圖……………………………………………… 51 圖 4-14 波形二波型圖…………………………………………… 52 圖 4-15 波形三波型圖…………………………………………… 52 圖 4-16 單道雷射銲接所產生的翹曲圖………………………… 55 圖 4-17 單道雷射銲接外觀圖…………………………………… 56 圖 4-18 單道雷射銲接微硬度表………………………………… 56 圖 4-19 雙面雷射銲接外觀圖…………………………………… 57 圖 4-20 雙面雷射銲接微硬度表………………………………… 57 圖 4-21 單道雷射銲接外觀圖…………………………………… 58 圖 4-22 單道雷射銲接微硬度圖………………………………… 58 圖 4-23 母材SEM圖…………………………………………………60 圖 4-24 母材EDS分析圖……………………………………………61 圖 4-25 拉伸試片外觀圖………………………………………… 62 圖 4-26 雙面雷射破壞圖………………………………………… 62 圖 4-27 雙面雷射破壞圖………………………………………… 63 圖 4-28 雙面雷射破壞圖………………………………………… 63 圖 4-29 斷裂處α相組織………………………………………… 64 圖 4-30 母材破壞圖……………………………………………… 65 圖 4-31 母材破壞圖 ………………………………………………65 圖 4-32 斷裂處α相與β相組織………………………………… 66 圖 4-33 無保護氣體破壞圖……………………………………… 67 圖 4-34 保護氣體破壞圖………………………………………… 67

    [1]郭俊生(民91)。2002年鈦合金銲接的世紀,銲接與切割,91年9月 12卷5期。
    [2]侯貫智(民94)。2005年中國大陸鈦加工材市場分析,金屬中心產業資訊組產業評析專欄。
    [3]佳能數位相機。97年2月10日取自: http://www.canon.com.tw/
    [4]侯貫智(民97)。從全球鈦合金熱潮下看我國產業發展機會,金屬中心產業資訊組產業評析專欄。
    [5]蔡幸甫(民92)。輕金屬產業發展現況及趨勢,工業材料雜誌198期。
    [6]洪清富、高景海(民89)。鍛造雜誌,第九卷第二期。
    [7]侯貫智。環保成為海綿鈦製程的焦點議題,產業評析專欄產業研究組,
    金屬中心。
    [8] W. H. Kearns, Welding Handbook Seventh Edition Volume 4, Metal and Their Weldability, AWS.
    [9] 張世穎(民90)。鈦合金之發展現況及其在汽車工業之應用,工業材料雜誌,90年2月 170期。
    [10]郭啟全(2001)。雷射材料加工實作研究,機械技術雜誌。
    [11]李端真、周嘉宜、蕭金政、蕭義雄 (民87)。物理,高立圖書有限公司。
    [12]莊裕仁(2000)。雷射銲接之原理與應用,機械技術雜誌82期。
    [13] C.E. Albright, Proceeding of the ASM(1981).Trends in Welding Research, New Orleans, Louisian, pp.653-665.
    [14] R.R. Wang, C.T. Chang(1998).Thermal modeling of laser welding for titanium dental restorations, J. Prosthet Dent, pp.335~342.
    [15] 單亦磐(民92)。雷射銲接缺陷對鈦-6鋁-4釩合金銲件機械性質之影響
    , 國立海洋大學,材料工程研究所,碩士論文。
    [16] M.W. Turner, M.J.J. Schmidt, L. Li, (2005) .Preliminary study into the effects of YAG laser processing of titanium 6Al–4V alloy for potential aerospace component cleaning application, pp.624~630.
    [17] T.K. Neo , J .Chia , J.L. Gilbert , W.T. Wozniak , M.J.(1996) .Engelman : Mechanical properties of titanium connectors, Int J. Prosthodont, pp.379~393.
    [18] T. Chai and C.K. Chou(1998). Mechanical properties of laser-welded cast titanium joints under different conditions, J. Prosthet Dent, pp.477~483.
    [19] Winco K.C. Yung, B. Ralph, W.B. Lee, R. Fenn(1997).An investigation into welding parameters affecting the tensile properties of titanium welds, J Materials Processing technology, pp.759~764.
    [20] J. Mazumder and W. M .Steen(1980).Metal Construction, Vol.12, No.9, pp.423~427.
    [21] S.J. Chen and J.H. Devletion(1990). Welding Journal, Vol.69, No.12, pp.319~325.
    [22] J. Mazumder and W. M. Steen(1980), Metal Construction, Vol.12, No.9, pp.423~427.
    [23] M.Roggensack, M.H. Walter, K.W. Böning(1993).Studies on laser-welded and plasma-welded titanium, Dent Mater, pp.104~107.
    [24 E.Berg, W.C.Wagner, G. Davik and E.R. Dootz(1995).Mechanical properties of laser-welded cast and wrought titanium,J.Prosthet Den, pp.250~257
    [25] M.W. Turner (2005).Preliminary study into the effects of YAG laser processing of titanium 6Al–4V alloy for potential aerospace component cleaning application, pp.623~630.
    [26] C. Bertrand , O. Laplanche , J. P. Rocca , Y. Le Petitcorps , S. Nammour(2007).Effect of the combination of different welding parameters on melting characteristics of grade 1 titanium with a pulsed Nd: YAG laser, pp.237~244.
    [27] Iwasaki K et al(2004).Distortion of laser welded titanium plates, pp.593~599
    [28] R.R. Wang and C.T. Chang(1998).Thermal modelling of laser welding for titanium dental restorations, pp.335~342.
    [29] S. H., Wang M. D.Wei﹐and L. W. Tasy(2003).Tensile Properties of LB W Welds in Ti-6Al-4V Alloy at Evaluated Temperratures Belows 450℃, Materials Letters, Vol.57.

    無法下載圖示 本全文未授權公開
    QR CODE