研究生: |
許民錠 Hui, Man-Ting |
---|---|
論文名稱: |
應用TCCIP資料分析蘭陽溪流域降雨及溫度變化趨勢 Application of TCCIP Data on Precipitation and Temperature Trend Analysis in LangYang River Basin |
指導教授: |
廖學誠
Liaw, Shyue-Cherng |
口試委員: |
廖學誠
Liaw, Shyue-Cherng 翁叔平 Weng, Shu-Ping 詹進發 Jan, Jin-Fa |
口試日期: | 2023/05/26 |
學位類別: |
碩士 Master |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 170 |
中文關鍵詞: | 蘭陽溪流域 、降雨量 、氣溫 、趨勢分析 |
英文關鍵詞: | LangYang river basin, Precipitation, Temperature, Trend analysis |
研究方法: | 次級資料分析 |
DOI URL: | http://doi.org/10.6345/NTNU202300724 |
論文種類: | 學術論文 |
相關次數: | 點閱:149 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣候變遷改變全球水文型態,降雨為重要的水資源來源,同時亦可能是關鍵致災因子,而台灣目前面臨水資源短缺以及用水需求增加的困境中,未來亦面對較高的氣候風險。蘭陽溪為宜蘭縣重要的水資源來源,流域內常發生氣候災害,未來氣候亦有所改變,因而需要了解降雨特性方能為水資源管理及災害防治提供重要決策資訊。雖然相關氣候資料之趨勢分析已有大量相關研究,但隨著氣象資料的完善及趨勢分析方法之改進,有望提供更準確之趨勢結果。因此本研究以蘭陽溪流域為研究區域,利用臺灣氣候變遷推估資訊與調適知識平台(Taiwan Climate Change Projection Information and Adaptation Knowledge Platform ,TCCIP)所提供之網格化氣象資料,以傳統的Mann-Kendall檢定及Theil-Sen斜率檢定搭配近年新興的Innovative Trend Analysis(ITA),探討蘭陽溪流域之降雨及氣溫之趨勢變化狀況。
研究結果顯示,蘭陽溪流域之降雨量在4月、12月及春季顯著增加。氣溫方面,平均溫無顯著增減趨勢;最高溫在9月、10月、12月、秋季及年尺度顯著減少;最低溫除4月外,皆為顯著增加的趨勢,說明蘭陽溪流域之降雨量、最高溫及最低溫有所改變,而降雨量、溫度及相關因素的相互作用及影響仍有待探討,研究結果可供經營管理單位或後續學術研究使用。
The global hydrological pattern changed because of climate change. Rainfall is an important source of water resources but also can be the trigger of disaster. Taiwan is currently facing the predicament of water shortage and increasing demand for water, and it will also face higher climate risks in the future. LanYang River is an important source of water resources in Yilan, but climate disasters often occur in the basin, and the climate will change in the future. Therefore, it is necessary to understand the characteristics of precipitation to provide important decision-making information for water resource management and disaster prevention. Although there have been a lot of research on trend analysis of relevant climate data, but with the improvement of meteorological data and trend analysis methods, it is expected to provide results more accurately. Therefore, this study takes LanYang River Basin as the research area, using the gridded meteorological data provided by the Taiwan Climate Change Projection Information and Adaptation Knowledge Platform (TCCIP), with the traditional Mann- The Kendall test and Theil-Sen slope test are combined with Innovative Trend Analysis (ITA), which has emerged in recent years, to explore the trends of rainfall and temperature in the LanYang River Basin.
The results show that the precipitation in the LanYang River Basin increased significantly in April, December and spring. In terms of temperature, the average temperature has no significant increase or decrease trend. The Maximum temperature decreases significantly in September, October, December, autumn and on annual scale. The minimum temperature showed a significant increase trend except for April. It indicating that the rainfall, maximum temperature, and minimum temperature in LanYang River Basin have changed but interaction and impact of rainfall, temperature, and related factors still need to be explored. The results can be used by management units or subsequent academic research.
王振剛(2011) 宜蘭地面降雨之統計降尺度推估:以IPCC-SRA2情境為例。台北市: 國立臺灣大學生物環境系統工程學研究所碩士論文。
宋健豪、廖俊瑋、廖學誠(2014) 蘭陽溪上游集水區降雨量之趨勢分析。中華林學季刊,47(4):341-358
李明熹、簡士濠、徐一平、林煥軒 (2015) 近十年蘭陽溪集水區降雨沖蝕指數推估公式之 建立及空間分析之探討,農業工程學報,61(4),46-54。
李易哲(2021) 東亞季風與地形效應對大氣塑膠微粒沉降之影響。台北市: 國立臺灣大學地理環境資源學系碩士論文。
邱繼成、林冠州、李宗祐、王文誠(2021) 應用網格化雨量資料建立臺灣各流域年尺度之雨量-流量關係,地理研究,74,37-60。
宜蘭縣政府(2015)宜蘭縣氣候變遷調適計畫期末報告(正式版),宜蘭
林棽(2015) 臺灣地區乾旱問題之分析。桃園市: 國立中央大學大氣物理研究所碩士論文。
林佩瑩(2022) 極端降雨相關指標在臺灣長期變化的分析:觀測、模擬及未來推估。台北市: 國立臺灣師範大學地球科學系碩士論文。
林和駿、洪致文(2013)以台灣分區雨量指數分析百年來降雨變化。102年天氣分析與預報研討會。台北,中央氣象局。
徐紹青(2018) 台灣地區氣溫之統計特性及其長期變遷。台北市: 國立臺灣師範大學地理學系碩士論文。
陳雲蘭(2008)百年來台灣氣候的變化,科學發展,424,6-11
陳玄芬、涂建翊 (2017)以 TCCIP 資料分析臺灣降雨的氣候特徵與長期變化,中國地理學會會刊,59:1-20。
涂建翊、紀佳臻(2017)臺灣夏季大雨發生頻率變化與颱風關係研究,地理學報,85,27-46。
翁叔平、楊承道(2018)臺灣地區日降雨網格化資料庫(1960~2015)之建置與驗證,臺灣水利,66(4),34-52。
翁春雄、許晃雄(2018) 台灣春季乾旱研究 : 氣候變遷推估與診斷。107年天氣分析與預報研討會。台北,中央氣象局。
曹潔萍、遲道才、武立強、劉麗、李帥瑩、于淼 (2008)Mann-kendall檢驗方法在降水趨勢分析中的應用研究,農業科技與裝備,5:36-40。
許民錠、陳守泓(2022) 牡丹水庫集水區降雨分布與長期趨勢分析,地理研究,76,139-159。
許晃雄、羅資婷、洪致文、洪志誠、李明營、陳雲蘭、黃威凱、盧孟明、隋中興 (2012) 氣候自然變異與年代際變化,大氣科學,40(3),249-295。
黃燕儀、翁叔平 (2011) 臺灣地區日較差的百年變化(1901-2008),大氣科學,85,69-82。
楊志文 (2003) 台灣冬季降水年際變化之研究。桃園市: 國立中央大學大氣物理研究所碩士論文。
葉振峰、葉信富、李振誥 (2015a) 以 Mann-Kendall 及 Theil-Sen 檢定法評估臺灣地區長期河川流量長期時空趨勢變化,2015年中華水土保持學會年會及學術研討會論文集,1-14。
葉振峰、葉信富、李哲瑋、李振誥 (2015b) 以河川乾旱指標評估台灣北部區域乾旱特性,農業工程學報,61(4),79-92。
葉致均、顏增璽、吳尚宸 (2020) 西南風與臺灣地區降雨、沉降高溫分布之初步探討。109年天氣分析與預報研討會。台北,中央氣象局。
經濟部水利署 (2022)水利統計簡訊,398。https://www-ws.wra.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvNDAxL3JlbGZpbGUvOTA1OC85OTQ5OS9kODdiNzAzMS00ZTg1LTRkZjMtOGQ2ZS02N2Y5OWFiZjY5MDQucGRm&n=c3RhMzk4LnBkZg%3d%3d&icon=..pdf。(2022年8月2日瀏覽)
經濟部水利署 (2021)水利統計簡訊,392。https://www-ws.wra.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvNDAxL3JlbGZpbGUvOTA1OC84ODkyOC9hMDkzYzY0ZC1lYzkyLTQ5ZDAtYmE1OS04YzJhZjA3MmQ2NDQucGRm&n=c3RhMzkyLnBkZg%3d%3d&icon=..pdf。(2022年8月3日瀏覽)
壽克堅、費立沅、陳勉銘、梁均合、黃怡婷、林佳霏(2014) 蘭陽溪上游之地形地質對河床土砂之影響。中華水土保持學報,45(4):225-233
臺灣試驗流域資訊平台(2015) 宜蘭河_蘭陽溪治理規劃報告2015,台北。
臺灣氣候變遷推估資訊與調適知識平台(2018) 臺灣氣候的過去與未來,台北。
臺灣氣候變遷推估資訊與調適知識平台(2020) 臺灣日降雨網格化觀測資料之建置與驗證,臺灣氣候變遷推估資訊與調適知識平台電子報,37
賴栗葦、姜善鑫 (2004) 臺灣地區月平均氣溫日較差趨勢分析,地理學報,36,101-116
鍾侑達、郭峻菖、陳昶憲 (2009) 台灣區域降雨趨勢分析,農業工程學報,55 (4),1-18。
蘇冠臻、葉大綱、詹士樑、洪景山(2020) 臺北都市化對溫度、雨量與GPS可降水量之影響,大氣科學,47(2),204-227。
龔楚媖、顏葆琳、李宗融、吳宜昭、于宜強(2015)《台灣極端降雨事件:1992-2013 年重要事件彙整》專書導讀,國家災害防救科技中心災害防救電子報,120,1-20。
Adelodun, B., Odey, G., Cho, H., Lee, S., Adeyemi, K.A., Choi, K.S. (2022). Spatial-temporal variability of climate indices in Chungcheong provinces of Korea: Application of graphical innovative methods for trend analysis. Atmospheric Research, 280:1-19.
Ahmad Ijaz, Tang, D.H., Wang, T.F., Wang W. and Wegan Bakhtawar. (2015). Precipitation Trends over Time Using Mann-Kendall andSpearman’s rho Tests in Swat River Basin, Pakistan. Advances in Meteorology, 2: 1-15.
Alifujiang, Y., Abuduwaili, J., Maihemuti, B., Emin, B., Groll, M. (2020)Innovative Trend Analysis of Precipitation in the Lake Issyk-Kul Basin, Kyrgyzstan. Atmosphere, 11(4):332.
Ampofo, S., Annor, T., Aryee, J.N.A., Atiah, W.A., Amekudzi, L. K. (2023). Long-term spatio-temporal variability and change in rainfall over Ghana (1960–2015). Scientific African,19:1-14.
Bouklikha, A., Habi, M., Elouissi, A., Benzayer, B. (2020) The Innovative Trend Analysis Applied to Annual and Seasonal Rainfall in the Tafna Watershed (Algeria). Revista Brasileira de Meteorologia, 35(4):631-647
Bera, D., Chatterjee, N.D., Ghosh, S., Dinda, S., Bera, S. (2022). Recent trends of land surface temperature in relation to the influencing factors using Google Earth Engine platform and time series products in megacities of India. Journal of Cleaner Production,379:1-18.
Das, S., Sangode, S.J., Kandekar, A.M. (2021a). Recent decline in streamflow and sediment discharge in the Godavari basin, India (1965–2015). CATENA,206:1-20.
Das, J., Mandal, T., Rahman, A.S. and Saha, P. (2021b). Spatio-temporal characterization of rainfall in Bangladesh: an innovative trend and discrete wavelet transformation approaches. Theoretical and Applied Climatology, 143(3), pp.1557-1579.
Diop, L., Bodian, A. and Diallo, D. (2016). Spatiotemporal Trend Analysis of the Mean Annual Rainfall in Senegal. European Scientific Journal,12(12):231–245.
Yacoub, E., Tayfur, G. (2020) Spatial and temporal of variation of meteorological drought and precipitation trend analysis over whole Mauritania. Journal of African Earth Sciences,163:1-12.
Gebremichael, H.B., Raba, G.A., Beketie, K.T., Feyisa, G.L., Siyoum, T. (2022) Changes in daily rainfall and temperature extremes of upper Awash Basin, Ethiopia. Scientific African,16:1-21.
Gwatida, T., Kusangaya, S., Gwenzi, J., Mushore, T., Shekede, M.D., Viriri, N. (2023). Is climate really changing? Insights from analysis of 30-year daily CHIRPS and station rainfall data in Zimbabwe. Scientific African, 19:1-12.
Güçlü, Y.S. (2018a). Multiple Şen-innovative trend analyses and partial Mann-Kendall test. Journal of Hydrology, 566:685-704.
Güçlü, Y.S. (2018b). Improved visualization for trend analysis by comparing with classical Mann-Kendall test and ITA. Journal of Hydrology, 584:1-9.
Hadi, S.J. and Tombul, M. (2018). Long-term spatiotemporal trend analysis of precipitation and temperature over Turkey. Meteorological Applications, 25:445–455.
Harka, A.E., Jilo, N.B., Behulu, F. (2021). Spatial-temporal rainfall trend and variability assessment in the Upper Wabe Shebelle River Basin, Ethiopia:Application of innovative trend analysis method. Journal of Hydrology, Regional Studies, 37:1-24.
Huang, C.W., Chiang, Y., Wu, Y.R., Lee L.J. and Lim H.S. (2012). The impact of Climate change on Rainfall Frequency in Taiwan. Terrestrial, Atmospheric and Oceanic sciences journal, 12(5):554-564.
Huang, F., Qian, B., Ochoa, C.G. (2023) Long-term river water temperature reconstruction and investigation: A case study of the Dongting Lake Basin, China. Journal of Hydrology, 616:1-12
Hung, C.W., Hsu, H.H. and Lu, M.M. (2004) Decadal oscillation of spring rain in northern Taiwan. Geophysical Research Letters, 31(22)
Ijaz, A., Tang, D.H., Wang, T.F., Wang W. and Bakhtawar, W. (2015). Precipitation Trends over Time Using Mann-Kendall and Spearman’s rho Tests in Swat River Basin, Pakistan. Advances in Meteorology, 2:1-15.
IPCC. (2021). Climate Change 2021: The Physical Science Basis Summary for Policymakers. Working Group l contribution on the Sixth Assessment Report of the Intergovernmental Panel on climate Change. Cambridge University Press. In Press.
Jenifer, M.A., Jha, M.K. (2021) Assessment of precipitation trends and its implications in the semi-arid region of Southern India. Environmental Challenges, 5:1-16
Jhong, B.C., Huang J., Tung, C.P. (2019). Spatial Assessment of Climate Risk for Investigating Climate Adaptation Strategies by Evaluating Spatial-Temporal Variability of Extreme Precipitation. Water Resources Management, 33(10):3377-3400.
Karmeshu Neha (2012). Trend Detection in Annual Temperature & Precipitation using the Mann Kendall Test – A Case Study to Assess Climate Change on Select States in the Northeastern United States. United States. Master of Environmental Studies Capstone Projects. 47
Kakkar, A., Rai, P.K., Mishra, V.N., Singh, P. (2022). Decadal trend analysis of rainfall patterns of past 115 years & its impact on Sikkim, India. Remote Sensing Applications: Society and Environment, 26:1-16.
Kendall, M.G. (1975). Rank Correlation Methods, 4th ed. Charles Griffin: London.
Kocsis, T., Székely, I.K. Anda, A. (2020). Homogeneity tests and non-parametric analyses of tendencies in precipitation time series in Keszthely, Western Hungary. Theoretical and Applied Climatology, 139:849-859.
Li, J.L., Wu, W.J., Ye, X.X., Jiang, H., Gan, R.J., Wu, H.L., He, J.L., Jiang, Y.L.(2019) Innovative trend analysis of main agriculture natural hazards in China during 1989–2014. Natural Hazards, 95(3):677-720.
Mann, H.B. (1945). Non-parametric test against trend. Econometrica, 13: 245-259.
Moradi, M. (2020) Trend analysis and variations of sea surface temperature and chlorophyll-a in the Persian Gulf. Marine Pollution Bulletin, 156:1-14
Menna, B.Y., Waktola, D.K. (2022). Extreme temperature trend and return period mapping in a changing climate in Upper Tekeze river basin, Northern Ethiopia. Physics and Chemistry of the Earth, 128:1-12.
Malede, D.A., Agumassie, T.A., Kosgei, J.R., Nguyen, T.T.L., Andualem, T.G. (2022). Analysis of rainfall and streamflow trend and variability over Birr River watershed, Abbay basin, Ethiopia. Environmental Challenges, 7:1-11.
Mehmood, M., Hassan, M., Iqbal, W., Amin, G. (2022)Spatiotemporal variation in temperature extremes and their association with large scale circulation patterns in the Central Karakorum during 1982–2019. Atmospheric Research, 267:1-14
Neha, K. (2012). Trend Detection in Annual Temperature & Precipitation using the Mann Kendall Test – A Case Study to Assess Climate Change on Select States in the Northeastern United States. United States. Master of Environmental Studies Capstone Projects. 47.
Nyikadzino, B., Chitakira, M., Muchuru, S. (2020). Rainfall and runoff trend analysis in the Limpopo river basin using the Mann Kendall statistic. Physics and Chemistry of the Earth, 117:1-11.
Partal Turgay and Kahya Ercan (2006). Trend analysis in Turkish precipitation data. Hydrological Processes, 20 (13): 2011-2026.
Praveen, B., Talukdar, S., Shahfahad, Mahato, S., Mondal, J., Sharma1, P., Islam, A.R.Md.T. and Rahman, A. (2020). Analyzing trend and forecasting of rainfall changes in India using nonparametrical and machine learning approaches. Scientific Reports, 10:1-21.
Petrow, T. and Merz, B. (2009). Trends in flood magnitude, frequency and seasonality in Germany in the period1951–2002. Journal of Hydrology, 371:129-141.
Roy, S., Taloor, A.K., Bhattacharya, P. (2023). A geospatial approach for understanding the spatio-temporal variability and projection of future trend in groundwater availability in the Tawi basin, Jammu, India. Groundwater for Sustainable Development, 21:1-15.
Sen P.K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, 63(324):1379–1389.
Şen, Z. (2012). Innovative trend analysis methodology. Journal of Hydrologic Engineering, 17 (9):1042–1046.
Shawky, M., Ahmed, M.R., Ghaderpour, E., Gupta, A., Achari, G., Dewan, A., Hassan, Q.K. (2023). Remote sensing-derived land surface temperature trends over South Asia. Ecological Informatics, 74:1-15.
Shigute, M., Alamirew, T., Abebe, A., Ndehedehe, C.E., Kassahun, H.T. (2023). Analysis of rainfall and temperature variability for agricultural water management in the Upper Genale River Basin, Ethiopia. Scientific African, 20:1-42.
Sa’adi, Z., Yaseen, Z.M., Farooque, A.A., Mohamad, N.A., Muhammad, M.K.I., Iqbal, Z. (2023)Long-term trend analysis of extreme climate in Sarawak tropical peatland under the influence of climate change. Weather and Climate Extremes, 40:1-15
Talaee, P.H. (2006). Trend analysis in Turkish precipitation data. Hydrological Processes,20(9):2011-2026.
Tamm, O., Saaremäe, E., Rahkema, K., Jaagus, J., Tamm, T. (2023). The intensification of short-duration rainfall extremes due to climate change – Need for a frequent update of intensity–duration–frequency curves. Climate Services, 30:1-10.
Turgay, P. and Ercan, K. (2006). Trend analysis in Turkish precipitation data. Hydrological Processes, 20(13):2011-2026.
Theil, H. (1950). A rank-invariant method of linear and polynomial regression analysis, part iii. Proceedings of the Koninklijke Nederlandse Akademie Wetenschappen, Series A Mathematical Sciences, 53:1397– 1412.
Umar, D.A., Ramli, M.F., Aris, A.Z., Jamil, N.R., Aderemi, A.A. (2019). Evidence of climate variability from rainfall and temperature fluctuations in semi-arid region of the tropics. Atmospheric Research, 224:52-64.
Rao, G.V., Reddy, K.V., Srinivasan, R., Sridhar, V., Umamahesh, N.V., Pratap, D. (2020). Spatio-temporal analysis of rainfall extremes in the flood-prone Nagavali and Vamsadhara Basins in eastern India. Weather and Climate Extremes, 29:1-13.
Wang, Y.F., Xu, Y.P., Tabari, H., Wang, J., Wang, Q., Song, S., Hu. Z.L. (2020). Innovative trend analysis of annual and seasonal rainfall in the Yangtze River Delta, eastern China. Atmospheric Research, 231:1-14.
World Economic Forum. (2021). The Global Risks Report 2021 16th Edition Insight Report. WEF. Geneva Switzerland.
Weng, S.P. (2010). Changes of Diurnal Temperature Range in Taiwan and Their Large-Scale Associations : Univariate and Multivariate Trend Analyses. Journal of the Meteorological Society of Japan, 88(2), 203-226.
Wu, S.Q., Zhao, W.J., Yao, J.Q., Jin, J.N., Zhang, M., Jiang, G.F. (2022). Precipitation variations in the Tai Lake Basin from 1971 to 2018 based on innovative trend analysis. Ecological Indicators, 139:1-18.
Yacoub, E. and Tayfur G. (2019). Trend analysis of temperature and precipitation in Trarza region of Mauritania. Journal of Water and Climate Change, 10(3):484-493.
Yang, H.L., Xiao, H., Guo, C.W., Sun, Y. and G, R.N. (2020). Innovative trend analysis of annual and seasonal precipitation in Ningxia, China. Atmospheric and Oceanic Science Letters, 13(4):308-315.