研究生: |
林軍旭 Lin, Chun-Hsu |
---|---|
論文名稱: |
支援小學生線上論證式科學探究電腦化腳本的成效 Effects of Online Argumentative Scientific Inquiry Supported by Computerized Scripts among Elementary Students |
指導教授: |
邱瓊慧
Chiu, Chiung-Hui |
學位類別: |
博士 Doctor |
系所名稱: |
資訊教育研究所 Graduate Institute of Information and Computer Education |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 99 |
中文關鍵詞: | 論證式科學探究 、科學過程 、論述能力 、電腦化腳本 |
英文關鍵詞: | argumentative scientific inquiry, science process skills, argument construction, computerized scripts |
DOI URL: | http://doi.org/10.6345/DIS.NTNU.GICE.015.2018.F02 |
論文種類: | 學術論文 |
相關次數: | 點閱:191 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本論文研究的目的是探討電腦化腳本是否有助於提升小學生在科學過程技能和論述能力的表現,並進一步檢視電腦化腳本在科學探究活動過程中是否改變學生的論證質量。本研究依據科學探究程序的特徵,發展了支持於不同探究階段進行論證的輔助,將其轉化為電腦化的腳本,並納入在一個線上論證式科學探究系統中。本研究包含兩個實驗:第一個實驗檢驗學生使用電腦化腳本參與線上論證式科學探究活動後對學生科學過程技能和論述能力的影響,參與者來自高雄市某一所小學的兩個六年級的班級,兩個班級分別被分配到有腳本組(實驗組)及無腳本組(對照組),分別有26和24位學生,每位學生使用一部平板電腦連結前述論證式科學探究系統參與科學探究活動。第二個實驗則進一步檢視學生於有、無電腦化腳本介入之線上論證式科學探究活動各過程階段中其論證質量的差異。參與者來自台南市某所小學六年級的六個班級,其中三個班級分配到實驗組,另外三個級班分派到對照組,兩組分別有78和84位學生,他們使用電腦教室的桌上型電腦連線參與科學探究活動。研究結果支持電腦化腳本對提昇學生的科學過程技能和論述能力有顯著的效果;同時,電腦化腳本能有效影響學生於探究過程中提出論述的質量。本研究提供了實證的結果,證明了將電腦化腳本整合在線上論證式科學探究系統中的效果。
關鍵詞: 論證式科學探究、科學過程、論述能力、電腦化腳本
Abstract
The purpose of this dissertation study was to investigate whether computerized scripts can help improve the performance of elementary students in science processes and the construction of quality arguments, and further examine whether the scripts affect the quality and quantity of student arguments during the process of scientific inquiry. This study developed various argumentation assistances that comply with the features of each phase of scientific inquiry. The argumentation assistances were transformed into computerized scripts and incorporated with an online argumentative scientific inquiry system. This study involved two experimental designs. The first investigated the effects of the computerized scripts on students’ science process and argument construction skills after experiencing the process of online argumentative scientific inquiry activity. Two intact classes at an elementary school in Kaohsiung, Taiwan, were assigned to groups with and without computerized scripts, with 26 students in the experimental group and 24 students in the control group. Each student used a tablet computer to connect to the argumentative scientific inquiry system while participating in the scientific inquiry activity. The second experiment further examined the differences between students who used computerized scripts and those who did not in terms of quality and quantity of the arguments they generated during all phases of the process of an online argumentative scientific inquiry activity. One hundred and sixty-two sixth-grade students from six intact classes at an elementary school in Tainan, Taiwan, participated in the scientific inquiry activity. Three classes were assigned to the experimental group (78 students) and the other three classes were assigned to the control group (84 students). Each student used a desktop computer in the computer classroom to participate in the scientific inquiry activity. The findings of the current study support that the computerized scripts had positive effects in improving science process and argument construction skills. In addition, computerized scripts can effectively influence the quality and quantity of arguments that students generated during the process of inquiry. This study provides empirical evidence addressing the effectiveness of integrating computerized scripts into an online argumentative scientific inquiry.
Keywords: argumentative scientific inquiry, science process skills, argument construction, computerized scripts
References
Andriessen, J. (2006). Arguing to learn. In R. K. Sawyer (Ed.), Cambridge handbook of the learning sciences. New York: Cambridge University Press.
Andriessen, J., Baker, M., & Suthers, D. (2003). Arguing to learn : Confronting cognitions in computer-supported collaborative learning environments Computer-supported collaborative learning, v. 1 (pp. 205-216). Dordrecht, The Netherlands; Boston.
Asterhan, C. S., & Schwarz, B. B. (2007). The effects of monological and dialogical argumentation on concept learning in evolutionary theory. Journal of Educational Psychology, 99(3), 626.
Asterhan, C. S. C., & Schwarz, B. B. (2009). Argumentation and explanation in conceptual change: Indications from protocol analyses of peer-to-peer dialog. Cognitive Science, 33(3), 374-400. doi:10.1111/j.1551-6709.2009.01017.x
Bell, P. (2000). Scientific arguments as learning artifacts: Designing for learning from the web with kie. International Journal of Science Education, 22(8), 797-817. doi:10.1080/095006900412284
Berg, K. F. (1994). Scripted cooperation in high school mathematics: Peer interaction and achievement. Paper presented at the 1994 Annual Meeting of American Educational Research Association, New Orleans, LA.
Berkowitz, M. W., & Gibbs, J. C. (1983). Measuring the developmental features of moral discussion. Merrill-Palmer Quarterly, 29(4), 399-410.
Berland, L. K., & Reiser, B. J. (2009). Making sense of argumentation and explanation. Science Education, 93(1), 26-55.
Braund, M., Scholtz, Z., Sadeck, M., & Koopman, R. (2013). First steps in teaching argumentation: A south african study. International Journal of Educational Development, 33(2), 175-184. doi:10.1016/j.ijedudev.2012.03.007
Brockriede, W., & Ehninger, D. (1960). Toulmin on argument: An interpretation and application. Quarterly Journal of Speech, 46, 44. doi:citeulike-article-id:4212082
Bulu, S. T., & Pedersen, S. (2010). Scaffolding middle school students’ content knowledge and ill-structured problem solving in a problem-based hypermedia learning environment. Educational Technology Research and Development, 58(5), 507-529. doi:10.1007/s11423-010-9150-9
Bunterm, T., Lee, K., Kong, J., Srikoon, S., Vangpoomyai, P., Rattanavongsa, J., & Rachahoon, G. (2014). Do different levels of inquiry lead to different learning outcomes? A comparison between guided and structured inquiry. International Journal of Science Education, 36(12), 1937-1959. doi:10.1080/09500693.2014.886347
Burns, J. C., Okey, J. R., & Wise, K. C. (1985). Development of an integrated process skill test: TIPS II. Journal of Research in Science Teaching, 22(2), 169-177.
Cavagnetto, A. R. (2010). Argument to foster scientific literacy. Review of Educational Research, 80(3), 336-371. doi:doi:10.3102/0034654310376953
Cavalli-Sforza, V., Lesgold, A. M., & Weiner, A. W. (1992). Strategies for contributing to collaborative arguments. Paper presented at the the Fourteenth Annual Conference of the Cognitive Science Society, Hillsdale.
Chambliss, M. J., & Murphy, P. K. (2002). Fourth and fifth graders representing the argument structure in written texts. Discourse Processes, 34(1), 91-115. doi:10.1207/S15326950DP3401_4
Chen, C.-H., & Chiu, C.-H. (2016). Collaboration scripts for enhancing metacognitive self-regulation and mathematics literacy. International Journal of Science and Mathematics Education, 14(2), 263-280. doi:10.1007/s10763-015-9681-y
Chin, C., & Osborne, J. (2010a). Students' questions and discursive interaction: Their impact on argumentation during collaborative group discussions in science. Journal of Research in Science Teaching, 47(7), 883-908. doi:10.1002/tea.20385
Chin, C., & Osborne, J. (2010b). Students' questions and discursive interaction: Their impact on argumentation during collaborative group discussions in science. Journal of Research in Science Teaching, 883-908
doi:10.1002/tea.20385
Chinn, C. A., & Brewer, W. F. (1998). An empirical test of a taxonomy of responses to anomalous data in science. Journal of Research in Science Teaching, 35(6), 623-654. doi:10.1002/(sici)1098-2736(199808)35:6<623::aid-tea3>3.0.co;2-o
Cho, K. L., & Jonassen, D. H. (2002). The effects of argumentation scaffolds on argumentation and problem solving. Educational Technology Research and Development, 50(3), 5-22. doi:10.1007/bf02505022
Choi, A., Hand, B., & Norton-Meier, L. (2014). Grade 5 students’ online argumentation about their in-class inquiry investigations. Research in Science Education, 44(2), 267-287. doi:10.1007/s11165-013-9384-8
Choi, A., Notebaert, A., Diaz, J., & Hand, B. (2010). Examining arguments generated by year 5, 7, and 10 students in science classrooms. Research in Science Education, 40(2), 149-169. doi:10.1007/s11165-008-9105-x
Clark, D. B., & Sampson, V. D. (2007). Personally-seeded discussions to scaffold online argumentation. International Journal of Science Education, 29(3), 253-277. doi:10.1080/09500690600560944
Cohen, J. (1988). Statistical power analysis for the behavioral sciences: Routledge.
Dansereau, D. F., McDonald, B. A., Collins, K. W., Garland, J. C., Holley, C. D., Diekhoff, G. M., & Evans, S. E. (1979). Evaluation of a learning strategy system. In J. H. F. O'neil & C. D. Spielberger (Eds.), Cognitive and affective learning strategies. Hillsdale, NJ: Lawrence Erlbaum Association.
de Jong, T. (2006). Scaffolds for scientific discovery learning. In J. Elen & R. E. Clark (Eds.), Handling complexity in learning environments: Theory and research (pp. 107-128). London: Elsevier Science Publishers.
De La Paz, S. (2005). Effects of historical reasoning instruction and writing strategy mastery in culturally and academically diverse middle school classrooms. Journal of Educational Psychology, 97(2), 139.
Demircioglu, T., & Ucar, S. (2015). Investigating the effect of argument-driven inquiry in laboratory instruction. Educational Sciences: Theory & Practice, 15(1), 1-17. doi:10.12738/estp.2015.1.2324
Dillenbourg, P. (2002). Over-scripting CSCL: The risks of blending collaborative learning with instructional design. In P. A. Kirschner (Ed.), Three worlds of CSCL. Can we support CSCL? (pp. 61-91). Heerlen, Nederland: Open Universiteit.
Dillenbourg, P., & Hong, F. (2008). The mechanics of CSCL macro scripts. International Journal of Computer-Supported Collaborative Learning, 3(1), 5-23. doi:10.1007/s11412-007-9033-1
Dillenbourg, P., & Jermann, P. (2007). Designing integrative scripts. In F. Fischer, I. Kollar, H. Mandl & J. M. Haake (Eds.), Scripting computer-supported collaborative learning (pp. 275-301). New York, NY: Springer US.
Driver, R., Learch, J., Millar, R., & Scott, P. (1996). Young people's images of science. Philadelphia, PA: Open University Press.
Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312.
Duschl, R. A. (2000). Making the nature of science explicit. In R. Millar, J. Leach & J. Osborne (Eds.), Improving science: The contribution of research. Milton Keynes: Open University Press.
Duschl, R. A. (2007). Quality argumentation and epistemic criteria. In S. Erduran & M. Jiménez-Aleixandre (Eds.), Argumentation in science education (Vol. 35, pp. 159-175): Springer Netherlands.
Duschl, R. A., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38(1), 39-72. doi:10.1080/03057260208560187
Eick, C., Meadows, L., & Balkcom, R. (2005). Breaking into inquiry. Science Teacher, 72(7), 49-53.
Erduran, S., Simon, S., & Osborne, J. (2004). Tapping into argumentation: Developments in the application of toulmin's argument pattern for studying science discourse. Science Education, 88(6), 915-933.
Ergul, R., Simsekli, Y., Calis, S., Ozdilek, Z., Gocmencelebi, S., & Sanli, M. (2011). The effects of inquiry-based science teaching on elementary school students’ science process skills and science attitudes. Bulgarian Journal of Science and Education Policy, 5(1), 48-68.
Faust, J. L., & Paulson, D. R. (1998). Active learning in the college classroom. Journal on Excellence in College Teaching, 9(2), 3-24.
Felton, M. K. (2004). The development of discourse strategies in adolescent argumentation. Cognitive Development, 19(1), 35-52. doi:10.1016/j.cogdev.2003.09.001
Finley, F. N. (1983). Science processes. Journal of Research in Science Teaching, 20(1), 47-54. doi:10.1002/tea.3660200105
Fischer, F., Kollar, I., Stegmann, K., & Wecker, C. (2013). Toward a script theory of guidance in computer-supported collaborative learning. Educational Psychologist, 48(1), 56-66. doi:10.1080/00461520.2012.748005
Ge, X., & Land, S. M. (2004). A conceptual framework for scaffolding ill-structured problem-solving processes using question prompts and peer interactions. Educational Technology Research and Development, 52(2), 5-22. doi:10.1007/BF02504836
Glassner, A., Weinstock, M., & Neuman, Y. (2005). Pupils' evaluation and generation of evidence and explanation in argumentation. British Journal of Educational Psychology, 75(1), 105-118. doi:10.1348/000709904x22278
Golanics, J. D., & Nussbaum, E. M. (2008). Enhancing online collaborative argumentation through question elaboration and goal instructions. Journal of Computer Assisted Learning, 24(3), 167-180.
Gott, R., & Duggan, S. (2007). A framework for practical work in science and scientific literacy through argumentation. Research in Science & Technological Education, 25(3), 271-291. doi:10.1080/02635140701535000
Hane, E. N. (2007). Use of an inquiry-based approach to teaching experimental design concepts in a general ecology course. Teaching Issues and Experiments in Ecology, 5, 1-19.
Hirsch, L., Saeedi, M., Cornillon, J., & Litosseliti, L. (2004). A structured dialogue tool for argumentative learning. Journal of Computer Assisted Learning, 20(1), 72-80. doi:10.1111/j.1365-2729.2004.00068.x
Hogan, K., & Maglienti, M. (2001). Comparing the epistemological underpinnings of students' and scientists' reasoning about conclusions. Journal of Research in Science Teaching, 38(6), 663-687. doi:10.1002/tea.1025
Hogan, K., & Pressley, M. (1997). Scaffolding scientific competencies within classroom communities of inquiry Scaffolding student learning: Instructional approaches and issues. (pp. 74-107). Cambridge, MA, US: Brookline Books.
Hong, K. S., Brudvik, O. C., & Chee, S. Y. (2006). The impact of structured discussion on students’ attitudes and dispositions toward argumentation. Paper presented at the Proceedings of the 14th International Conference on Computers in Education, Amsterdam.
Hong, N. S., Jonassen, D. H., & McGee, S. (2003). Predictors of well-structured and illstructured problem solving in an astronomy simulation. Journal of Science Teaching, 40(1), 6-33.
Hron, A., & Friedrich, H. F. (2003). A review of web-based collaborative learning: Factors beyond technology. Journal of Computer Assisted Learning, 19(1), 70-79. doi:10.1046/j.0266-4909.2002.00007.x
Hsu, C.-C., Chiu, C.-H., Lin, C.-H., & Wang, T.-I. (2015). Enhancing skill in constructing scientific explanations using a structured argumentation scaffold in scientific inquiry. Computers & Education, 91, 46-59. doi:10.1016/j.compedu.2015.09.009
Hsu, P. S., Van Dyke, M., Chen, Y., & Smith, T. J. (2015). The effect of a graph-oriented computer-assisted project-based learning environment on argumentation skills. Journal of Computer Assisted Learning, 31(1), 32-58. doi:10.1111/jcal.12080
Hsu, R. F. (1988). The changes of learning hierarchies in students’ investigation designing skill. Journal of Research in Education Sciences, 33, 377-413. doi:10.6209/JORIES
Hsu, Y.-S. (2004). Using the internet to develop students' capacity for scientific inquiry. Journal of Educational Computing Research, 31(2), 137-161.
Huang, H.-H., Hsu, J. S.-C., & Ku, C.-Y. (2012). Understanding the role of computer-mediated counter-argument in countering confirmation bias. Decision Support Systems, 53(3), 438-447. doi:10.1016/j.dss.2012.03.009
Intel. (2017). Intel showing evidence: Overview and benefits. Retrieved 4/12, 2017, from https://engage.intel.com/docs/DOC-51902
Jeong, A., & Joung, S. (2007). Scaffolding collaborative argumentation in asynchronous discussions with message constraints and message labels. Computers & Education, 48(3), 427-445.
Jeong, A., & Lee, J. (2008). The effects of active versus reflective learning style on the processes of critical discourse in computer-supported collaborative argumentation. British Journal of Educational Technology, 39(4), 651-665.
Jiménez-Aleixandre, M., & Erduran, S. (2007). Argumentation in science education: An overview. In S. Erduran & M. Jiménez-Aleixandre (Eds.), Argumentation in science education (Vol. 35, pp. 3-27): Springer Netherlands.
Jimenez-Aleixandre, M. P., Rodriguez, A. B., & Duschl, R. A. (2000). "Doing the lesson" or "doing science": Argument in high school genetics. Science Education, 84, 757-792.
Jonassen, D., & Kim, B. (2010). Arguing to learn and learning to argue: Design justifications and guidelines. Educational Technology Research & Development, 58(4), 439-457. doi:10.1007/s11423-009-9143-8
Kat Cooper, A., & Oliver-Hoyo, M. T. (2016). Argument construction in understanding noncovalent interactions: A comparison of two argumentation frameworks. Chemistry Education Research and Practice, 17(4), 1006-1018. doi:10.1039/C6RP00109B
Kelly, G. J., & Takao, A. (2002). Epistemic levels in argument: An analysis of university oceanography students' use of evidence in writing. Science Education, 86(3), 314-342. doi:10.1002/sce.10024
Kester, L., & Kirschner, P. A. (2009). Effects of fading support on hypertext navigation and performance in student-centered e-learning environments. Interactive Learning Environments, 17(2), 165-179. doi:10.1080/10494820802054992
Kim, H., & Song, J. (2006). The features of peer argumentation in middle school students' scientific inquiry. Research in Science Education, 36(3), 211-233.
King, A. (2007). Scripting collaborative learning processes: A cognitive perspective. In F. Fischer, I. Kollar, H. Mandl & J. M. Haake (Eds.), Scripting computer-supported collaborative learning: Cognitive, computational and educational perspectives (pp. 13-37). Boston, MA: Springer US.
Klaczynski, P. A. (2000). Motivated scientific reasoning biases, epistemological beliefs, and theory polarization: A two-process approach to adolescent cognition. Child Development, 71(5), 1347.
Kollar, I., Fischer, F., & Hesse, F. (2006). Collaboration scripts – a conceptual analysis. Educational Psychology Review, 18(2), 159-185. doi:10.1007/s10648-006-9007-2
Kollar, I., Fischer, F., & Slotta, J. D. (2005). Internal and external collaboration scripts in web-based science learning at schools. Paper presented at the Proceedings of th 2005 conference on Computer support for collaborative learning: learning 2005: the next 10 years!, Taipei, Taiwan.
Kollar, I., Fischer, F., & Slotta, J. D. (2007). Internal and external scripts in computer-supported collaborative inquiry learning. Learning and Instruction, 17(6), 708-721. doi:10.1016/j.learninstruc.2007.09.021
Kuhn, D. (1991). The skills of argument: Cambridge University Press.
Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science Education, 77(3), 319-337. doi:10.1002/sce.3730770306
Kuhn, D. (2005). Developing argument skills Education for thinking (pp. 149-173). Cambridge, MA: Harvard University Press.
Kuhn, D., Goh, W., Iordanou, K., & Shaenfield, D. (2008). Arguing on the computer: A microgenetic study of developing argument skills in a computer-supported environment. Child Development, 79(5), 1310-1328.
Kuhn, D., & Udell, W. (2003). The development of argument skills. Child Development, 74(5), 1245-1260. doi:10.1111/1467-8624.00605
Kuhn, D., & Udell, W. (2007). Coordinating own and other perspectives in argument. Thinking & Reasoning, 13(2), 90-104. doi:10.1080/13546780600625447
Kyza, E., & Edelson, D. C. (2005). Scaffolding middle school students' coordination of theory and evidence. Educational Research & Evaluation, 11(6), 545-560. doi:10.1080/13803610500254857
Kyza, E. A. (2009). Middle-school students’ reasoning about alternative hypotheses in a scaffolded, software-based inquiry investigation. Cognition and Instruction, 27(4), 277-311. doi:10.1080/07370000903221718
Kyza, E. A., Constantinou, C. P., & Spanoudis, G. (2011). Sixth graders’ co-construction of explanations of a disturbance in an ecosystem: Exploring relationships between grouping, reflective scaffolding, and evidence-based explanations. International Journal of Science Education, 33(18), 2489-2525. doi:10.1080/09500693.2010.550951
Land, S., & Zembal-Saul, C. (2003). Scaffolding reflection and articulation of scientific explanations in a data-rich, project-based learning environment: An investigation of progress portfolio. Educational Technology Research and Development, 51(4), 65-84. doi:10.1007/bf02504544
Lazonder, A. W., Wilhelm, P., & Ootes, S. A. W. (2003). Using sentence openers to foster student interaction in computer-mediated learning environments. Computers & Education, 41(3), 291-308. doi:10.1016/S0360-1315(03)00050-2
Leutner, D. (2000). Double-fading support — a training approach to complex software systems. Journal of Computer Assisted Learning, 16(4), 347-357. doi:doi:10.1046/j.1365-2729.2000.00147.x
Limon, M. S., Turner, M. M., & Zompetti, J. P. (2008). Informal arguing: The likelihood of providing arguments, rebuttals, refutations, and evidence in an argumentative interaction. Argumentation and advocacy : the journal of the American Forensic Association, 45(1), 37-48.
Lin, S.-S., & Mintzes, J. (2010). Learning argumentation skills though instruction in scocioscientific issues: The effect of ability level. International Journal of Science and Mathematics Education, 8(6), 993-1017. doi:10.1007/s10763-010-9215-6
Lin, Y.-R., & Hung, J.-F. (2016). The analysis and reconciliation of students’ rebuttals in argumentation activities. International Journal of Science Education, 38(1), 130-155. doi:10.1080/09500693.2015.1134848
Linn, M. C. (2000). Designing the knowledge integration environment. International Journal of Science Education, 22(8), 781-796. doi:10.1080/095006900412275
Lizotte, D. J., McNeill, K. L., & Krajcik, J. (2004). Teacher practices that support students' construction of scientific explanations in middle school classrooms. Paper presented at the Proceedings of the 6th international conference on Learning sciences, Santa Monica, California.
Lord, C. G., Lepper, M. R., & Preston, E. (1984). Considering the opposite: A corrective strategy for social judgment. Journal of Personality and Social Psychology, 47(6), 1231-1243.
Lord, C. G., Ross, L., & Lepper, M. R. (1979). Biased assimilation and attitude polarization: The effects of prior theories on subsequently considered evidence. Journal of Personality and Social Psychology, 37(11), 2098-2109.
Lu, J., & Zhang, Z. (2013). Scaffolding argumentation in intact class: Integrating technology and pedagogy. Computers & Education, 69, 189-198. doi:10.1016/j.compedu.2013.07.021
Lyman, F. T. (1981). The responsive classroom discussion: The inclusion of all students. In A. Anderson (Ed.), Mainstreaming digest (pp. 109-113): College Park: University of Maryland Press.
Macpherson, R., & Stanovich, K. E. (2007). Cognitive ability, thinking dispositions, and instructional set as predictors of critical thinking. Learning and Individual Differences, 17(2), 115-127. doi:10.1016/j.lindif.2007.05.003
Maloney, J. (2007). Children's roles and use of evidence in science: An analysis of decision‐making in small groups. British Educational Research Journal, 33(3), 371-401. doi:10.1080/01411920701243636
McAlister, S., Ravenscroft, A., & Scanlon, E. (2004). Combining interaction and context design to support collaborative argumentation using a tool for synchronous cmc. Journal of Computer Assisted Learning, 20(3), 194-204. doi:10.1111/j.1365-2729.2004.00086.x
McNeill, K. L. (2009). Teachers' use of curriculum to support students in writing scientific arguments to explain phenomena. Science Education, 93(2), 233-268. doi:10.1002/sce.20294
McNeill, K. L., & Knight, A. M. (2013). Teachers’ pedagogical content knowledge of scientific argumentation: The impact of professional development on k–12 teachers. Science Education, 97(6), 936-972. doi:10.1002/sce.21081
McNeill, K. L., & Krajcik, J. (2007). Middle school students' use of appropriate and inappropriate evidence in writing scientific explanations. Paper presented at the Thinking with data: The proceedings of the 33rd Carnegie symposium on cognition, Mahwah, NJ.
McNeill, K. L., & Krajcik, J. (2008). Scientific explanations: Characterizing and evaluating the effects of teachers' instructional practices on student learning. Journal of Research in Science Teaching, 45(1), 53-78. doi:10.1002/tea.20201
McNeill, K. L., & Krajcik, J. (2009). Synergy between teacher practices and curricular scaffolds to support students in using domain-specific and domain-general knowledge in writing arguments to explain phenomena. Journal of the Learning Sciences, 18(3), 416 - 460.
McNeill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting students' construction of scientific explanations by fading scaffolds in instructional materials. Journal of the Learning Sciences, 15(2), 153-191. doi:10.1207/s15327809jls1502_1
Myers, B. E., & Dyer, J. E. (2005). Effects of investigative laboratory instruction on content knowledge and science process skill achievement across learning styles. Journal of Agricultural Education, 47(4), 52-63.
Noroozi, O., Weinberger, A., Biemans, H. J. A., Mulder, M., & Chizari, M. (2013). Facilitating argumentative knowledge construction through a transactive discussion script in CSCL. Computers & Education, 61(0), 59-76. doi:10.1016/j.compedu.2012.08.013
National Research Council. (1996). National science educational standards. Washington DC: National Academic press.
National Research Council. (2000). Inquiry and the national science education standards. Washington, DC: National Academy Press.
Nussbaum, E. M. (2002). Scaffolding argumentation in the social studies classroom. Social Studies, 93(3), 79.
Nussbaum, E. M., & Kardash, C. M. (2005). The effects of goal instructions and text on the generation of counterarguments during writing. Journal of Educational Psychology, 97(2), 157-169.
Nussbaum, E. M., & Schraw, G. (2007). Promoting argument-counterargument integration in students' writing. Journal of Experimental Education, 76(1), 59-92.
Nussbaum, E. M., & Sinatra, G. M. (2003). Argument and conceptual engagement. Contemporary Educational Psychology, 28(3), 384-395. doi:10.1016/s0361-476x(02)00038-3
Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328(5977), 463-466. doi:10.1126/science.1183944
Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994-1020.
Osborne, J., Erduran, S., Simon, S., & Monk, M. (2001). Enhancing the quality of argument in school science. School science review, 82(301), 63-70.
Owens, M., & Nussbaum, E. M. (2017). Twitter vs. Facebook: Using social media to promote collaborative argumentation in an online classroom. Journal of Interactive Learning Research, 28(3), 249-267.
Pallant, J. (2016). Spss survival manual: A step by step guide to data analysis using ibm spss (6th ed.): Maidenhead, England: Open University Press.
Pedaste, M., Mäeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A. N., Kamp, E. T., . . . Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47-61. doi:10.1016/j.edurev.2015.02.003
Perkins, D. N. (1985). Postprimary education has little impact on informal reasoning. Journal of Educational Psychology, 77(5), 562-571. doi:10.1037/0022-0663.77.5.562
Perkins, D. N., Farady, M., & Bushey, B. (1991). Everyday reasoning and the roots of intelligence. In J. Voss, D. N. Perkins & J. Segal (Eds.), Informal reasoning and education (pp. 83-105). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Pratt, H., & Hackett, J. (1998). Teaching science: The inquiry approach. Principal, 78(2), 20-22.
Radinsky, J. (2008). Students' sense-making with visual data in small-group argumentation. Paper presented at the International Conference of the Learning Sciences, Utrecht, The Netherlands.
Renkl, A., K. Atkinson, R., & H. Maier, U. (2000). From studying examples to solving problems: Fading worked-out solution steps helps learning.
Reznitskaya, A., & Anderson, R. C. (2002). The argument schema and learning to reason. In C. C. Block & M. Pressley (Eds.), Comprehension instruction (pp. 219-334). New York: Guilford.
Reznitskaya, A., Anderson, R. C., & Li-Jen, K. (2007). Teaching and learning argumentation. Elementary School Journal, 107(5), 449-472.
Reznitskaya, A., Anderson, R. C., McNurlen, B., Nguyen-Jahiel, K., Archodidou, A., & Kim, S.-y. (2001). Influence of oral discussion on written argument. Discourse Processes, 32(2-3), 155-175. doi:10.1080/0163853X.2001.9651596
Roth, W.-M., & Roychoudhury, A. (1993). The development of science process skills in authentic contexts. Journal of Research in Science Teaching, 30(2), 127-152. doi:10.1002/tea.3660300203
Ryu, S., & Sandoval, W. A. (2012). Improvements to elementary children's epistemic understanding from sustained argumentation. Science Education, 96(3), 488-526. doi:10.1002/sce.21006
Sadler, T. D., & Fowler, S. R. (2006). A threshold model of content knowledge transfer for socioscientific argumentation. Science Education, 90(6), 986-1004. doi:10.1002/sce.20165
Salminen, T., Marttunen, M., & Laurinen, L. (2008). Argument elaboration during structured and unstructured dyadic chat discussion in secondary school. Paper presented at the Proceedings of the Conference Knowledge Construction in E-learning Context: CSCL, ODL, ICT and SNA in education (2008), Cesena, Italy, September 1-2, 2008.
Sampson, V., & Clark, D. B. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92(3), 447-472. doi:10.1002/sce.20276
Sandoval, W. A. (2003). Conceptual and epistemic aspects of students’ scientific explanations. Journal of the Learning Sciences, 12(1), 5-51.
Sandoval, W. A., & Millwood, K. A. (2005). The quality of students' use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23-55. doi:10.1207/s1532690xci2301_2
Sandoval, W. A., & Reiser, B. J. (2004). Explanation-driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88(3), 345-372. doi:10.1002/sce.10130
Schank, R. C., & Abelson, R. P. (1977). Scripts, plans, goals, and understanding: An inquiry into human knowledge structures (1st ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
Scheuer, O., Loll, F., Pinkwart, N., & McLaren, B. (2010). Computer-supported argumentation: A review of the state of the art. International Journal of Computer-Supported Collaborative Learning.
Schwab, J. J. (1962). The teaching of science as enquiry. In P. F. B. J. J. Schwab (Ed.), The teaching of science. Cambridge, MA: Harvard University Press.
Schwartz, D. L., Cheng, K. M., Salehi, S., & Wieman, C. (2016). The half empty question for socio-cognitive interventions. Journal of Educational Psychology, 108(3), 397-404. doi:10.1037/edu0000122
Schwarz, B. (2003). Collective reading of multiple texts in argumentative activities. International Journal of Educational Research, 39(1–2), 133-151. doi:10.1016/S0883-0355(03)00077-6
Schwarz, B. B., Neuman, Y., Gil, J., & Iiya, M. (2003). Construction of collective and individual knowledge in argumentative activity. Journal of the Learning Sciences, 12, 219-256.
Simon, S., Erduran, S., & Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2-3), 235-260. doi:10.1080/09500690500336957
Spatariu, A., Hartley, K., Schraw, G., Bendixen, L. D., & Quinn, L. F. (2007). The influence of the discussion leader procedure on the quality of arguments in online discussions. Journal of Educational Computing Research, 37(1), 83-103.
Stanovich, K. E., & West, R. F. (2008). On the failure of cognitive ability to predict myside and one-sided thinking biases. Thinking & Reasoning, 14(2), 129-167. doi:10.1080/13546780701679764
Stegmann, K., Weinberger, A., & Fischer, F. (2007). Facilitating argumentative knowledge construction with computer-supported collaboration scripts. International Journal of Computer-Supported Collaborative Learning, 2(4), 421-447. doi:10.1007/s11412-007-9028-y
Stevens, J. P. (2009). Applied multivariate statistics for the social sciences, 5th ed. New York, NY, US: Routledge/Taylor & Francis Group.
Strough, J., & Covatto, A. M. (2002). Context and age differences in same- and other-gender peer preferences. Social Development, 11(3), 346-361. doi:10.1111/1467-9507.00204
Suthers, D. D. (2001). Architectures for computer supported collaborative learning. Paper presented at the IEEE International Conference on Advanced Learning Technologies (ICALT 2001), Madison.
Suthers, D. D., Vatrapu, R., Medina, R., Joseph, S., & Dwyer, N. (2008). Beyond threaded discussion: Representational guidance in asynchronous collaborative learning environments. Computers & Education, 50(4), 1103-1127. doi:10.1016/j.compedu.2006.10.007
Tishman, S., & Perkins, D. N. (1997). The language of thinking. Phi Delta Kappan, 78(5), 368-374.
Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.
Villasclaras-Fernández, E. D., Isotani, S., Hayashi, Y., & Mizoguchi, R. (2009). Looking into collaborative learning: Design from macro-and micro-script perspectives. Paper presented at the Proceedings of the 2009 conference on Artificial Intelligence in Education: Building Learning Systems that Care: From Knowledge Representation to Affective Modelling.
Voss, J. F., & Means, M. L. (1991). Learning to reason via instruction in argumentation. Learning and Instruction, 1(4), 337-350.
Voss, J. F., & Wiley, J. (1997). Developing understanding while writing essays in history. International Journal of Educational Research, 27(3), 255-265.
Weinberger, A., Stegmann, K., & Fischer, F. (2007). Knowledge convergence in collaborative learning: Concepts and assessment. Learning and Instruction, 17(4), 416-426. doi:10.1016/j.learninstruc.2007.03.007
Weinberger, A., Stegmann, K., Fischer, F., & Mandl, H. (2007). Scripting argumentative knowledge construction in computer-supported learning environments. In F. Fischer, I. Kollar, H. Mandl & J. Haake (Eds.), Scripting computer-supported collaborative learning (Vol. 6, pp. 191-211): Springer US.
White, B. Y., & Frederiksen, J. R. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16(1), 3-118. doi:10.1207/s1532690xci1601_2
Wiley, J., & Voss, J. (1999). Constructing arguments from multiple sources: Tasks that promote understanding and not just memory for text. Journal of Educational Psychology, 91, 301-311.
Wolfe, C., Britt, M. A., Petrovic, M., Albrecht, M., & Kopp, K. (2009). The efficacy of a web-based counterargument tutor. Behavior Research Methods, 41(3), 691-698. doi:10.3758/BRM.41.3.691
Wu, H. K., & Hsieh, C. E. (2006). Developing sixth graders’ inquiry skills to construct explanations in inquiry‐based learning environments. International Journal of Science Education, 28(11), 1289-1313. doi:10.1080/09500690600621035
Yager, R. E., & Akcay, H. (2007). What results indicate concerning the successes with STS instruction. Science Educator, 16(1), 13-21.
Yang, W.-T., Lin, Y.-R., She, H.-C., & Huang, K.-Y. (2015). The effects of prior-knowledge and online learning approaches on students’ inquiry and argumentation abilities. International Journal of Science Education, 37(10), 1564-1589. doi:10.1080/09500693.2015.1045957
Zohar, A., & Nemet, F. (2002). Fostering students' knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35-62.
Zuber, R. L. (1992). Cooperative learning by fifth-grade student: The effect of scripted and unscripted techniques. (Unpublished Doctoral Dissertation), Rutgers University, Piscataway, NJ.