簡易檢索 / 詳目顯示

研究生: 詹士賢
CHAN, Shih-Hsien
論文名稱: 有機不對稱催化合成異噁唑啶之衍生物
Enantioselective synthesis of the isoxazolidine derivatives
指導教授: 陳焜銘
Chen, Kwun-Min
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 101
中文關鍵詞: 有機不對稱催化異噁唑啶掌性磷酸催化劑布忍斯特酸相對離子對
英文關鍵詞: Organic asymmetric catalysis, isoxazolidine, chiral phosphoric acid catalyst, Brønsted acid, counterion pair
DOI URL: http://doi.org/10.6345/NTNU202001141
論文種類: 學術論文
相關次數: 點閱:192下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

第一章 緒論 1 1-1 前言 1 1-2 有機不對稱合成方式 3 1-2-1 對掌輔助劑(chiral auxiliary) 3 1-2-2 對掌試劑(chiral reagent) 4 1-2-3 對掌催化劑(chiral catalyst) 6 1-3 有機催化分類 7 1-3-1 共價催化-烯胺與亞銨離子 8 1-3-2 非共價催化-氫鍵催化 11 1-3-3 自由基催化-SOMO催化 15 1-3-4 相對離子催化—磷酸催化 17 1-4利用掌性磷酸催化合成異噁唑啶衍生物研究動機 21 第二章 實驗結果與討論 23 2-1 篩選親核劑(nucleophile) 23 2-2 優化反應條件以及取代基效應 25 2-3 掌性反應條件及取代基效應探討 30 2-4 反應條件機制之探討 35 2-5 結論 36 第三章 實驗流程與數據 37 3-1 分析儀器及基本實驗 37 3-2實驗步驟 39 3-2-1 吡咯類四級碳之異噁唑啶衍生物之基本反應操作步驟 39 3-3光譜數據 40 參考資料 53 附錄一 1H及13C-NMR光譜圖 58 附錄二 X-ray 單晶繞射結 構解析與數據 85

1. Wöhler, F., Ueber künstliche bildung des harnstoffs. Annalen der Physik 1828, 87 (2), 253-256.
2. http://terms.naer.edu.tw/detail/1304141/
3. Gal, J., Molecular Chirality in Chemistry and Biology: Historical Milestones. Helvetica Chimica Acta 2013, 96, 1617.
4. 《科學發展》2014年12月,504期,50 ~ 52頁
5. Takeuchi, Y.; Shiragami, T.; Kimura, K.; Suzuki, E.; Shibata, N., (R)-and (S)-3-Fluorothalidomides: Isosteric analogues of thalidomide. Organic Letters 1999, 1 (10), 1571-1573..
6. 《科學發展》2002年3月,351期,62 ~ 64頁
7. 《化學》2006年3月,64期,21 ~ 33頁http://dx.doi.org/10.6623/chem.2006002
8.. Evans, D. a. H., Gnter and Rping, Magnus, Chiral Auxiliaries in Asymmetric Synthesis. Asymmetric Synthesis - The Essentials 2008
9. https://www.coursehero.com/file/10186429/Stereoselectivity-in-organic-synthesis/
10. Corey, E. J.; Ensley, H. E., Preparation of an optically active prostaglandin intermediate via asymmetric induction. Journal of the American Chemical Society 1975, 97 (23), 6908-6909.
11. Brown, H. C.; Chandrasekharan, J.; Ramachandran, P. V., Chiral synthesis via organoboranes. 14. Selective reductions. 41. Diisopinocampheylchloroborane, an exceptionally efficient chiral reducing agent. Journal of the American Chemical Society 1988, 110 (5), 1539-1546.
12. MacMillan, D. W., The advent and development of organocatalysis. Nature 2008, 455 (7211), 304-8.
13. Hajos, Z. G. & Parrish, D. R. Asymmetric synthesis of optically active polycyclic organic compounds. German patent DE 2102623 (1971).
14. List, B.; Lerner, R. A.; Barbas, C. F., Proline-Catalyzed Direct Asymmetric Aldol Reactions. Journal of the American Chemical Society 2000, 122 (10), 2395-2396.
15. Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F., Amino Acid Catalyzed Direct Asymmetric Aldol Reactions:  A Bioorganic Approach to Catalytic Asymmetric Carbon−Carbon Bond-Forming Reactions. Journal of the American Chemical Society 2001, 123 (22), 5260-5267.
16. Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C., New Strategies for Organic Catalysis:  The First Highly Enantioselective Organocatalytic Diels−Alder Reaction. Journal of the American Chemical Society 2000, 122 (17), 4243-4244
17. Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jorgensen, K. A., Enantioselective organocatalyzed alpha sulfenylation of aldehydes. Angew Chem Int Ed Engl 2005, 44 (5), 794-7.
18. Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M., Diphenylprolinol silyl ethers as efficient organocatalysts for the asymmetric Michael reaction of aldehydes and nitroalkenes. Angewandte Chemie International Edition 2005, 44 (27), 4212-4215.
19.(a) Bredig, G.; Fiske, P. S., Durch katalysatoren bewirkte asymmetrische synthese. Biochem. Z 1912, 46 (7) (b) Bredig, G., M, Minaeff Biochem. Z 1932, 249, 241.
20. Sigman, M. S.; Jacobsen, E. N., Schiff base catalysts for the asymmetric Strecker reaction identified and optimized from parallel synthetic libraries. Journal of the American Chemical Society 1998, 120 (19), 4901-4902.
21. Okino, T.; Hoashi, Y.; Takemoto, Y., Enantioselective Michael reaction of malonates to nitroolefins catalyzed by bifunctional organocatalysts. Journal of the American Chemical Society 2003, 125 (42), 12672-12673.
22. Li, B.-J.; Jiang, L.; Liu, M.; Chen, Y.-C.; Ding, L.-S.; Wu, Y., Asymmetric Michael addition of arylthiols to α, β-unsaturated carbonyl compounds catalyzed by bifunctional organocatalysts. Synlett 2005, 2005 (04), 603-606.
23. (a) McCooey, S. H.; Connon, S. J., Urea‐and Thiourea‐Substituted Cinchona Alkaloid Derivatives as Highly Efficient Bifunctional Organocatalysts for the Asymmetric Addition of Malonate to Nitroalkenes: Inversion of Configuration at C9 Dramatically Improves Catalyst Performance. Angewandte Chemie International Edition 2005, 44 (39), 6367-6370.(b) Ye, J.; Dixon, D.; Hynes, P., Highly enantioselective Michael addition of malonate esters to nitro olefins using a cinchonine-derived bifunctional organic catalyst. Chem. Commun 2005, 4481-4483.
24. Malerich, J. P.; Hagihara, K.; Rawal, V. H., Chiral squaramide derivatives are excellent hydrogen bond donor catalysts. Journal of the American Chemical Society 2008, 130 (44), 14416-14417.
25. Beeson, T. D.; Mastracchio, A.; Hong, J.-B.; Ashton, K.; MacMillan, D. W., Enantioselective organocatalysis using SOMO activation. Science 2007, 316 (5824), 582-585
26. Jang, H.-Y.; Hong, J.-B.; MacMillan, D. W., Enantioselective organocatalytic singly occupied molecular orbital activation: The enantioselective α-enolation of aldehydes. Journal of the American Chemical Society 2007, 129 (22), 7004-7005.
27. Um, J. M.; Gutierrez, O.; Schoenebeck, F.; Houk, K.; MacMillan, D. W., Nature of intermediates in organo-SOMO catalysis of α-arylation of aldehydes. Journal of the American Chemical Society 2010, 132 (17), 6001-6005.
28. Graham, T. H.; Jones, C. M.; Jui, N. T.; MacMillan, D. W., Enantioselective organo-singly occupied molecular orbital catalysis: The carbo-oxidation of styrenes. Journal of the American Chemical Society 2008, 130 (49), 16494-16495.
29. Kim, H.; MacMillan, D. W., Enantioselective organo-SOMO catalysis: The α-vinylation of aldehydes. Journal of the American Chemical Society 2008, 130 (2), 398-399.
30. Pham, P. V.; Ashton, K.; MacMillan, D. W., The intramolecular asymmetric allylation of aldehydes via organo-SOMO catalysis: A novel approach to ring construction. Chemical science 2011, 2 (8), 1470-1473.
31. Akiyama, T.; Itoh, J.; Fuchibe, K., Recent progress in chiral Brønsted acid catalysis. Advanced Synthesis & Catalysis 2006, 348 (9), 999-1010.
32. Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K., Enantioselective Mannich‐type reaction catalyzed by a chiral Brønsted acid. Angewandte Chemie 2004, 116 (12), 1592-1594.
33. Uraguchi, D.; Terada, M., Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. Journal of the American Chemical Society 2004, 126 (17), 5356-5357
34. Tamura, Y.; Itoh, J.; Morita, H.; Fuchibe, K.; Akiyama, T., Enantioselective Aza-Diels-Alder Reaction Catalyzed by a Chiral Brønsted Acid. Synfacts 2006, 2006 (04), 0394-0394..
35. Uraguchi, D.; Sorimachi, K.; Terada, M., Organocatalytic asymmetric aza-Friedel− Crafts alkylation of furan. Journal of the American Chemical Society 2004, 126 (38), 11804-11805.
36. Rueping, M.; Antonchick, A. P.; Theissmann, T., A highly enantioselective Brønsted acid catalyzed cascade reaction: organocatalytic transfer hydrogenation of quinolines and their application in the synthesis of alkaloids. Angewandte Chemie International Edition 2006, 45 (22), 3683-3686.
37. Cheon, C. H.; Yamamoto, H., A Brønsted acid catalyst for the enantioselective protonation reaction. Journal of the American Chemical Society 2008, 130 (29), 9246-9247.
38.. Enders, D.; Narine, A. A.; Toulgoat, F.; Bisschops, T., Asymmetric Brønsted acid catalyzed isoindoline synthesis: enhancement of enantiomeric ratio by stereoablative kinetic resolution. Angewandte Chemie International Edition 2008, 47 (30), 5661-5665.
39. Sun, F. L.; Zeng, M.; Gu, Q.; You, S. L., Enantioselective synthesis of fluorene derivatives by chiral phosphoric acid catalyzed tandem double Friedel–Crafts reaction. Chemistry–A European Journal 2009, 15 (35), 8709-8712.
40 Terada, M.; Tanaka, H.; Sorimachi, K., Enantioselective direct Aldol-type reaction of azlactone via protonation of vinyl ethers by a chiral Brønsted acid catalyst. Journal of the American Chemical Society 2009, 131 (10), 3430-3431.
41. Rueping, M.; Uria, U.; Lin, M.-Y.; Atodiresei, I., Chiral organic contact ion pairs in metal-free catalytic asymmetric allylic substitutions. Journal of the American Chemical Society 2011, 133 (11), 3732-3735.
42. Dagousset, G.; Zhu, J.; Masson, G., Chiral phosphoric acid-catalyzed enantioselective three-component Povarov reaction using enecarbamates as dienophiles: highly diastereo-and enantioselective synthesis of substituted 4-aminotetrahydroquinolines. Journal of the American Chemical Society 2011, 133 (37), 14804-14813.
43. Čorić, I.; List, B., Asymmetric spiroacetalization catalysed by confined Brønsted acids. Nature 2012, 483 (7389), 315-319.
44 Terada, M.; Yamanaka, T.; Toda, Y., Chiral Anion Catalysis in the Enantioselective 1, 4‐Reduction of the 1‐Benzopyrylium Ion as a Reactive Intermediate. Chemistry–A European Journal 2013, 19 (41), 13658-13662.
45. Zhang, M.; Sun, W.; Zhu, G.; Bao, G.; Zhang, B.; Hong, L.; Li, M.; Wang, R., Enantioselective dearomative arylation of Isoquinolines. ACS Catalysis 2016, 6 (8), 5290-5294.
46. Xia, Z. L.; Zheng, C.; Wang, S. G.; You, S. L., Catalytic asymmetric dearomatization of indolyl dihydropyridines through an enamine isomerization/spirocyclization/transfer hydrogenation sequence. Angewandte Chemie 2018, 130 (10), 2683-2686.
47. Tsuji, N.; Kennemur, J. L.; Buyck, T.; Lee, S.; Prévost, S.; Kaib, P. S.; Bykov, D.; Farès, C.; List, B., Activation of olefins via asymmetric Brønsted acid catalysis. Science 2018, 359 (6383), 1501-1505.
48. Berthet, M. o.; Cheviet, T.; Dujardin, G.; Parrot, I.; Martinez, J., Isoxazolidine: a privileged scaffold for organic and medicinal chemistry. Chemical Reviews 2016, 116 (24), 15235-15283.
49 鄭祐松,,2019年,博士論文,不對稱有機催化之手性藥物合成

無法下載圖示 本全文未授權公開
QR CODE