研究生: |
張柏苓 Po-Ling Chang |
---|---|
論文名稱: |
不同阻力與不同座墊位置對自行車踩踏效率的影響 Effects of different resistances and saddle positions on cycling efficiency |
指導教授: |
相子元
Shiang, Tzyy-Yuang |
學位類別: |
碩士 Master |
系所名稱: |
運動競技學系 Department of Athletic Performance |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 座墊高度 、功率 、衝量 、肌電圖 、舒適度 |
英文關鍵詞: | saddle height, work rate, impulse, electromyography, comfort |
論文種類: | 學術論文 |
相關次數: | 點閱:316 下載:32 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
座墊位置明顯影響自行車的下肢踩踏,但是阻力改變後的影響仍鮮少被探究。目的:考量阻力介入的情況,以90rpm的固定節奏探討不同座墊位置對下肢踩踏的影響,從中評估最佳運動效率的座墊位置。文獻探討回顧了座墊高度的定義,調整座墊的影響,以及過去研究中的方法學差異。方法:招募11名無經歷過自行車專業訓練的大專學生(身高174.5 ± 6.1公分、體重70.8 ± 6.2公斤、年齡25.3 ± 1.3歲),經過知情同意書的閱讀後自願參與本實驗。實驗設計以2種功率 × 9種座墊位置進行,並擷取運動學、動因學、肌電圖數據,以及舒適度量表的主觀舒適感受。統計方法使用二因子重複量數變異數分析考驗阻力與座墊位置的相互影響。結果:座墊位置越低越前,下肢關節ROM會減少,踏板衝量不改變,下肢肌肉活化量會降低。舒適度量表則顯示中間座墊高度主觀最舒適。結論:90rpm、低座墊位置,有較佳的踩踏效率。
Purpose: To investigate the effect of cycling efficiency with different saddle position when resistance increased at 90 rpm. This thesis presented numerous saddle height definitions, and the difference of methodology among previous studies in literature review. Methods: Eleven college participants (height 174.5 ± 6.1 cm, weight 70.8 ± 6.2 kg, age 25.3 ± 1.3 years) joined this experiment voluntarily, riding on a bicycle simulator, which could adjust the saddle position and cycling work rate. In the experiment design with 2 work rates × 9 saddle positions, lower limb kinematic, pedal kinetic, lower limb electromyography, comfort scale data were recorded to assess the efficiency. A two-way repeated measures ANOVA was used for statistics. Results: When resistance increased, lower and more forward saddle position would lead to the decrease of lower limb joint ROM, unchanged pedal impulse, decrease of lower limb muscle activation, and the middle saddle height showed the most comfortable by comfort scale. Conclusion: This thesis found that riding with 90 rpm and lower saddle position would perform more efficiently when resistance increased.
大放異彩翻譯社(譯)(2010)。機能解剖學的觸診技術:下肢、軀幹。臺北縣中和市:三悅文化圖書。(林典雄, 2006)
吳志銘、周峻忠、劉錦謀(譯)(2008)。健康體適能評估標準手冊。臺北縣蘆洲市:易利圖書。(ACSM, 2007)
李福祥(1997)。座墊前後位置對自由車選手騎乘速度之影響。大專體育,(33),78-84。
周正亮、陳俊忠、劉作仁、徐道昌(1990)。自由車選手運動傷害調查研究。中華民國復健醫學會雜誌,(18),114-120。
林正常、林貴福、徐台閣、吳慧君(譯)(2002)。運動生理學(四版)。臺北市:麥格羅希爾。(Powers, S. K., & Howley, E. T., 2001)
邱新然(2010)。不同座管高度之腳踏車運動對下肢肌群肌肉活化程度與運動學之影響(未出版碩士論文)。國立臺北教育大學,臺北市。
胡祖武、李傳房(2006)。以主觀騎乘舒適性感受探討較舒適自行車座點位置之研究。設計學報,11(3),1-12。
徐文淵(2009)。自行車不同座椅高度對騎乘效率及下肢肌電訊號之影響(未出版碩士論文)。國立體育大學,桃園縣。
徐文淵、李恆儒(2009)。自行車運動髂脛束摩擦症候群探討。中華體育季刊,23(4),44-51。
張錚璿、羅懷保、相子元(2010)。不同騎乘姿勢對自行車踩踏力量之影響。華人運動生物力學期刊,2(1),48-56。
陳元鴻、黃紹仁(2010)。腳踏車坐墊高度對騎乘效率影響之研究。臺北市立教育大學學報,41(2),19-38。
陳昭慶(2010)。健身車座椅位置變化對下肢運動生物力學差異之研究(未出版碩士論文)。臺北市立體育學院,臺北市。
黃小萍(譯)(2008)。自行車全書(二版)。臺北市:貓頭鷹。(Ballantine, R., & Grant, R., 1998)
黃英豪(2010)。以下肢肌電訊號探討踏車運動座墊位置(未出版碩士論文)。國立臺灣師範大學,臺北市。
黃健崇(2011)。不同座墊高度對自行車運動表現及腿部肌肉肌電活性之影響(未出版碩士論文)。國立臺南大學,臺南市。
葉珮如(2010)。假日自行車道使用者休閒涉入與地方依附之相關研究-以臺北縣八里左岸自行車道為例(未出版碩士論文)。國立臺灣師範大學,臺北市。
鄭峰茂、許龍池(2011)。自行車休閒運動參與行為模式之研究-以高雄市自行車道為例。屏東教大體育,(14),468-485。
Abt, J. P., Smoliga, J. M., Brick, M. J., Jolly, J. T., Lephart, S. M., & Fu, F. H. (2007). Relationship between cycling mechanics core stability. Journal of Strength and Conditioning Research, 21(4), 1300-1304.
Albertus-Kajee, Y., Tucker, R., Derman, W., & Lambert, M. (2010). Alternative methods of normalising EMG during cycling. Journal of Electromyography and Kinesiology, 20(6), 1036-1043.
Baum, B., & Li, L. (2003). Lower extremity muscle activities during cycling are influenced by load and frequency. Journal of Electromyography and Kinesiology, 13(2), 181-190.
Bertucci, W., Grappe, F., Girard, A., Betik, A., & Rouillon, J. (2005). Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling. Journal of Biomechanics, 38(5), 1003-1010. doi: 10.1016/j.jbiomech.2004.05.037
Bini, R. R., Hume, P. A., & Croft, J. L. (2011a). Effects of bicycle saddle height on knee injury risk and cycling performance. Sports Medicine, 41(6), 463-476.
Bini, R. R., Hume, P. A., & Croft, J. L. (2011b). Effects of saddle height on pedal force effectiveness. Procedia Engineering, 13, 51-55.
Bini, R. R., Hume, P. A., Lanferdini, F. J., & Vaz, M. A. (2012 印刷中). Effects of moving forward or backward on the saddle on knee joint forces during cycling. Physical Therapy in Sport. doi: 10.1016/j.ptsp.2012.02.003
Bini, R. R., Tamborindeguy, A. C., & Mota, C. B. (2010). Effects of saddle height, pedaling cadence, and workload on joint kinetics and kinematics during cycling. Journal of Sport Rehabilitation, 19(3), 301-314.
Bressel, E., & Larson, B. J. (2003). Bicycle seat designs and their effect on pelvic angle, trunk angle, and comfort. Medicine & Science in Sports & Exercise, 35(2), 327-332.
Burke, E. R. (1994). Proper fit of the bicycle. Clinics in Sports Medicine, 13(1), 1-14.
Burke, E. R. (2002). Perfect positioning. In E. R. Burke (Ed.), Serious cycling (pp. 235-245). Chanpaign, IL: Human Kinetics.
Caldwell, G. E., Li, L., McCole, S. D., & Hagberg, J. M. (1998). Pedal and crank kinetics in uphill cycling. Journal of Applied Biomechanics, 14, 245-259.
Callaghan, M. J. (2005). Lower body problems and injury in cycling. Journal of Bodywork and Movement Therapies, 9(3), 226-236.
Chavarren, J., & Calbet, J. A. L. (1999). Cycling efficiency and pedalling frequency in road cyclists. European Journal of Applied Physiology and Occupational Physiology, 80(6), 555-563.
Christiaans, H. H. C. M., & Bremner, A. (1998). Comfort on bicycles and the validity of a commercial bicycle fitting system. Applied Ergonomics, 29(3), 201-211.
de Vey Mestdagh, K. (1998). Personal perspective in search of an optimum cycling posture. Applied Ergonomics, 29(5), 325-334.
Diefenthaeler, F., Bini, R. R., Karolczak, A. P. B., & Carpes, F. P. (2008). Ativação muscular durante a pedalada em diferentes posições do selim. Revista Brasileira de Cineantropometria e Desempenho Humano, Florianopólis, 10(2), 161-169.
Duc, S., Bertucci, W., Pernin, J. N., & Grappe, F. (2008). Muscular activity during uphill cycling: effect of slope, posture, hand grip position and constrained bicycle lateral sways. Journal of Electromyography and Kinesiology, 18(1), 116-127.
Ericson, M. O., & Nisell, R. (1988). Efficiency of pedal forces during ergometer cycling. International Journal of Sports Medicine, 9(2), 118-122.
Ericson, M. O., Bratt, A., Nisell, R., Nemeth, G., & Ekholm, J. (1986). Load moments about the hip and knee joints during ergometer cycling. Scandinavian Journal of Rehabilitation Medicine, 18(4), 165-172.
Ericson, M. O., Nisell, R., Arborelius, U. P., & Ekholm, J. (1985). Muscular activity during ergometer cycling. Scandinavian Journal of Rehabilitation Medicine, 17(2), 53-61.
Farrell, K. C., Reisinger, K. D., & Tillman, M. D. (2003). Force and repetition in cycling: possible implications for iliotibial band friction syndrome. The Knee, 10(1), 103-109.
Ferrer-Roca, V., Roig, A., Galilea, P., & García-López, J. (2011). Static versus dunamic evaluation in bike fitting: influence of saddle height on lower limb kinematics. Book of Proceedings (pp. 227-230). Porto, Portugal: 29th conference of International Society of Biomechanics in Sport.
Fleming, B. C., Beynnon, B. D., Renstrom, P. A., Peura, G. D., Nichols, C. E., & Johnson, R. J. (1998). The strain behavior of the anterior cruciate ligament during bicycling. The American Journal of Sports Medicine, 26(1), 109-118.
Gámez, J., Zarzoso, M., Raventós, A., Valero, M., Alcántara, E., López, A., ... Vera, P. (2008). Determination of the optimal saddle height for leisure cycling (P188). The Engineering of Sport 7, 255-260.
Hamley, E. J., & Thomas, V. (1967). Physiological and postural factors in the calibration of the bicycle ergometer. The Journal of Physiology, 191(2), 55-56.
Hanaki-Martin, S., Mullinaeux, D., Jeon, K., & Shapiro, R. (2010). Forward seat position effects on cycling kinematics. Book of Proceedings (pp. 240-243). Marquette, Michigan, USA: 28th conference of International Society of Biomechanics in Sport.
Hayot, C., Decatoire, A., Bernard, J., Monnet, T., & Lacouture, P. (2012). Effects of ‘posture length’ on joint power in cycling. Procedia Engineering, 34, 212-217.
Holmes, J. C., Pruitt, A. L., & Whalen, N. J. (1994). Lower extremity overuse in bicycling. Clinics in Sports Medicine, 13(1), 187-205.
Hug, F., & Dorel, S. (2009). Electromyographic analysis of pedaling: a review. Journal of Electromyography and Kinesiology, 19(2), 182-198.
Jorge, M., & Hull, M. L. (1986). Analysis of EMG measurements during bicycle pedalling. Journal of Biomechanics, 19(9), 683-694.
Kautz, S. A., & Hull, M. L. (1993). A theoretical basis for interpreting the force applied to the pedal in cycling. Journal of Biomechanics, 26(2), 155-165.
Konrad, P. (2005). The ABC of EMG: A practical introduction to kinesiological electromyography. Scottsdale, AZ, USA: Noraxon.
MacIntosh, B. R., Neptune, R. R., & Horton, J. F. (2000). Cadence, power, and muscle activation in cycle ergometry. Medicine & Science in Sports & Exercise, 32(7), 1281-1287.
Neptune, R. R., & Herzog, W. (1999). The association between negative muscle work and pedaling rate. Journal of Biomechanics, 32(10), 1021-1026.
Nordeen-Snyder, K. S. (1977). The effect of bicycle seat height variation upon oxygen consumption and lower limb kinematics. Medicine & Science in Sports & Exercise, 9(2), 113-117.
Peveler, W. W. (2008). Effects of saddle height on economy in cycling. Journal of Strength and Conditioning Research, 22(4), 1355-1359.
Peveler, W. W., & Green, J. M. (2011). Effects of saddle height on economy and anaerobic power in well-trained cyclists. Journal of Strength and Conditioning Research, 25(3), 629-633.
Peveler, W. W., Bishop, P., Smith, J., Richardson, M., & Whitehorn, E. (2005). Comparing methods for setting saddle height in trained cyclists. Journal of Exercise Physiology Online, 8(1), 51-55.
Ricard, M. D., Hills-Meyer, P., Miller, M. G., & Michael, T. J. (2006). The effects of bicycle frame geometry on muscle activation and power during a Wingate anaerobic test. Journal of Sports Science and Medicine, 5, 25-32.
Ryan, M. M., & Gregor, R. J. (1992). EMG profiles of lower extremity muscles during cycling at constant workload and cadence. Journal of Electromyography and Kinesiology, 2(2), 69-80.
Sanderson, D. J. (1991). The influence of cadence and power output on the biomechanics of force application during steady‐rate cycling in competitive and recreational cyclists. Journal of Sports Sciences, 9(2), 191-203.
Sanderson, D. J., & Amoroso, A. T. (2009). The influence of seat height on the mechanical function of the triceps surae muscles during steady-rate cycling. Journal of Electromyography and Kinesiology, 19(6), e465-e471.
Sanderson, D. J., Martin, P., Honeyman, G., & Keefer, J. (2006). Gastrocnemius and soleus muscle length, velocity, and EMG responses to changes in pedalling cadence. Journal of Electromyography and Kinesiology, 16(6), 642-649.
Shennum, P. L., & deVries, H. A. (1976). The effect of saddle height on oxygen consumption during bicycle ergometer work. Medicine & Science in Sports & Exercise, 8(2), 119-121.
Silberman, M. R., Webner, D., Collina, S., & Shiple, B. J. (2005). Road bicycle fit. Clinical Journal of Sport Medicine, 15(4), 271-276.
So, R. C. H., Ng, J. K. F., & Ng, G. Y. F. (2005). Muscle recruitment pattern in cycling: a review. Physical Therapy in Sport, 6(2), 89-96.
Spears, I. R., Cummins, N. K., Brenchley, Z., Donohue, C., Turnbull, C., Burton, S., & Macho, G. A. (2003). The effect of saddle design on stresses in the perineum during cycling. Medicine & Science in Sports & Exercise, 35(9), 1620-1625.
Tamborindeguy, A. C., & Bini, R. R. (2009). Does saddle height affect patellofemoral and tibiofemoral forces during bicycling for rehabilitation? Journal of Bodywork and Movement Therapies, 15(2), 186-191.
Thompson, M. J., & Rivara, F. P. (2001). Bicycle-related injuries. American Family Physician, 63(10), 2007-2014.
Too, D. (1990). Biomechanics of cycling and factors affecting performance. Sports Medicine, 10(5), 286-302.
Vrints, J., Koninckx, E., Van Leemputte, M., & Jonkers, I. (2011). The effect of saddle position on maximal power output and moment generating capacity of lower limb muscles during isokinetic cycling. Journal of Applied Biomechanics, 27(1), 1-7.
Whitty, A. G., Murphy, A. J., Coutts, A. J., & Watsford, M. L. (2009). Factors associated with the selection of the freely chosen cadence in non-cyclists. European Journal of Applied Physiology, 106(5), 705-712.