簡易檢索 / 詳目顯示

研究生: 蔡純芳
TSAI, CHUN-FANG
論文名稱: 以旋鍍法製備二氧化鈦薄膜及特性研究
Preparation and Characteristic of TiO2 thin film by spingcoating
指導教授: 鄭慶民
Cheng, Ching-Min
鄧敦平
Teng, Tun-Ping
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 88
中文關鍵詞: 二氧化鈦薄膜旋鍍法過氧鈦酸溶膠-凝膠法
英文關鍵詞: TiO2 thin film, Sping-coating, PTA, sol-gel method
論文種類: 學術論文
相關次數: 點閱:183下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用溶膠-凝膠法製備以過氧鈦酸(Peroxotitanic, PTA)為基底的二氧化鈦 (Titania, TiO2)光觸媒材料 ,並使用二階製程法調配不同濃度的PTA鍍液,以旋轉塗佈法成膜至玻璃試片上,經高溫燒結後形成 TiO2薄膜。藉由濃度比例、旋鍍次數與燒結溫度的參數調變,探討實驗參數對 TiO2薄膜結構與特性的影響。利用XRD、FESEM、UV/VIS/NIR光譜儀等精密儀器進行量測並分析製程參數與薄膜特性的關係,篩選出較佳實驗參數,作進一步光催化特性研究。針對篩選結果進行光催化水接觸角及亞甲基藍降解實驗,配合光譜儀作定量分析 ,探討鍍膜試片之光學、親疏水性與光催化降解汙染物特性。實驗結果顯示,本研究成功製備出具光催化性銳鈦礦相之 TiO2薄膜,薄膜品質平整無龜裂且結晶性良好,隨著鍍膜次數及燒結溫度增加,結晶顆粒變大且更緻密。由薄膜之光學特性顯示,具有較空白玻璃為低的穿透率與高反射特性,於紫外線波段之最低相對穿透比值達0.35,平均反射率為20%以上,適合應用在節能玻璃材料。光催化實驗方面,證實本研究之 TiO2薄膜具備光致親水特性及光催化降解汙染物能力,最佳接觸角可達18.48度,扣除亞甲基藍本身光解率後,薄膜之最佳降解率為25.2%。未來將利用此材料之最佳參數,應用於節能玻璃或太陽能電池等高平整性相關產品。

    In this study, sol-gel method was used to fabricate Peroxotitanic-acid (PTA) based Titania (TiO2) material. A two-step process was employed to deploy PTA with different concentrations, which were then deposited on a test glass by using spin-coating. After high-temperature sintering, a TiO2 thin film was then formed. Through tuning the parameters of proportions of the concentration, times of the spin-coating, and the changes of sintered temperature, the effect of experimental parameters on the TiO2 thin film structures and characteristics were investigated. XRD, FESEM, UV/VIS/NIR spectrometers, and other sophisticated instruments were utilized for measurement and analysis of the relationship between process parameters and film characteristics. Preferred experimental parameters were then selected for further study of photocatalytic characteristics. The screened results were employed for photocatalytic water contact angle and Methylene Blue (MB) experiments; with the use of spectrometer for quantitative analysis of the sample, the optical, hydrophobic/philic, and photocatalytic degradation pollutants characteristics were investigated. Experimental results showed that the photocatalytic TiO2 thin film of anatase was successfully fabricated with smooth, no cracks, and great crystallinity properties. Furthermore, as the number of coating and sintering temperature increased, the crystal grains became larger and more condensed. The thin film displayed optical characteristics of lower transmittance and higher reflectance comparing to un-coated glass; furthermore, its lowest relative transmittance in UV range was 0.35, and its average reflectance was more than 20%. All these verified its availability for energy saving glass applications. Finally, this study confirmed that TiO2 thin film has a hydrophilic characteristic and a characteristic of photocatalytic degradation of pollutants, where the best contact angle is up to 18.48°, and the best degradation of MB is 25.2%. In the future, the optimum parameters of this material are expected to be used for high-level-related products including energy saving glass or solar cell.

    摘 要 I Abstract II 謝 誌 IV 目 錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研目的 3 1.4 研究方法 3 1.5 研究架構 5 第二章 文獻探討 6 2.1 觸媒原理 6 2.2 奈米光觸媒 8 2.2.1 光學特性 9 2.2.2 光催化特性 9 2.2.3 電學特性 9 2.3 二氧化鈦晶體結構 10 2.4 二氧化鈦光催化原理 13 2.5 二氧化鈦之製備 17 2.5.1 溶膠凝膠法 18 2.6 二氧化鈦薄膜的量測技術 19 2.6.1 X射線繞射原理 19 2.6.2 高解析度場發射型掃描式電子顯微鏡 20 2.6.3 UV/VIS/NIR光譜儀量測原理 22 2.6.4 接觸角量測原理 24 第三章 實驗設計與規劃 26 3.1 實驗規劃 26 3.2 實驗流程 27 3.3 實驗材料 28 3.4 實驗設備 29 3.5 二氧化鈦薄膜製備 29 3.5.1 清洗基材 30 3.5.2 製備過氧鈦酸 30 3.5.3 旋轉塗佈 33 3.5.4 退火燒結 34 3.6 實驗參數設定 35 3.7 二氧化鈦凝膠特性量測 37 3.8 二氧化鈦薄膜特性量測 38 3.7.1 二氧化鈦薄膜結晶型態量測 38 3.7.2 二氧化鈦薄膜表面形貌與斷面量測 39 3.8 二氧化鈦薄膜光學特性量測 40 3.8.1 UV/VIS/NIR 光譜量測 40 3.8.2 光學薄膜分析 41 3.9 二氧化鈦薄膜光催化實驗 42 3.9.1 接觸角量測 42 3.9.2 亞甲基藍降解實驗 43 第四章 實驗結果與討論 44 4.1 二氧化鈦凝膠特性分析 44 4.2 二氧化鈦薄膜特性分析 45 4.2.1 二氧化鈦薄膜的均勻性分析 45 4.2.2 二氧化鈦薄膜的表觀分析 47 4.2.3 二氧化鈦薄膜的結晶型態 47 4.2.4 二氧化鈦薄膜的微觀形貌與斷面分析 53 4.2.4 二氧化鈦薄膜厚度分析 59 4.3 二氧化鈦薄膜光學特性分析 60 4.3.1 薄膜光學穿透與反射特性分析 60 4.4 二氧化鈦薄膜光催化特性分析 73 4.5 結果討論 81 第五章 結論與未來展望 83 5.1 結論 83 5.2 未來展望 84 文獻參考 85

    [1]R. A. Spurr, Howard Myers, "Ouantitative analysis of Anatase-Rutile mixtures with an X-ray diffractometer", Analytical Chemistry, 29, p.760-762, (1957)
    [2]G. D. Ulrich, "Theory of particle formation and growth in oxide synthsis flames", Combustion Science and Technology, 4, p.47-57, (1971)
    [3]G. D. Ulrich, N. S. Suramacian, "Coalescince as arate-controlling process", Combustion Science and Technology, 17, p.119-126, (1977)
    [4]G. D. Ulrich, J. W. Rieh, "Aggregation and growth of submicron oxide particle in flames", Journal of Colloid and Interface Science, 87, p.257-265, (1982)
    [5]G. D. Ulrich, "Flames synthesis of fine particle", Chemical and Engineering News, 62, p.22-29, (1984)
    [6]Cheng-Hung Hunga and Joseph L. Katz, "Formation of mixed oxide powders in flames: Part I. TiO2SiO2", Journal of Materials Research 7, p.1861-1869, (1992)
    [7]Boundless. "Activation Energy. " , Boundless Biology. Oct., (2014).
    [8]羅孟凡, "催化反應與表面科學", 科學發展,第458期, 40-45, (2011)
    [9]J. Zhao and X. D. Yang. Build. Environ., 38, p.645, (2003)
    [10]M. Anpo, T. Shima, and Y. Kubokawa. J. Phys. Chem., 91, p.4305, (1987)
    [11]樊美公, "光化學基本原理與光子學材料科學", 科學出版社, 北京, (2001)
    [12]張立德, 牟季美, "奈米材料和奈米結構", 科學出版社, 北京, (2001)
    [13]李新勇, 李數本, "奈米半導體研究進展", 化學進展, p.231-239, (1996)
    [14]張青紅, 高濂, 郭景坤, "無機材料學報", p.929-935, (2000)
    [15]Hiroshi Y. Cryt. Rev. "Solid State Mater " Sci., p.69-111, (1993)
    [16]G. Boyle, Renewable Energy, Stock: Oxford University Press, p.89-136, (2004)
    [17]莊嘉琛, "太陽能工程電池篇", 全華科技圖書股份有限公司, 台北市, (1997)
    [18]Vainshtein B K, Fridkin W M, Indenbom V L. "Structure of Crystals" Berlin: Mac-millan India Ltd, (1994)
    [19]Buchanan Relva C and Park, Taeun, Meterial Crystal Chemistry, New York: Marcel Dekker, Inc., (1997)
    [20]高濂, 鄭珊, 張青紅, "奈米光觸媒", 五南圖書, 台北市, (2004)
    [21]熊家林, 貢長生, 張克立, "無機精細化學品的製備和應用", 化學工業出版社, 北京, (1998)
    [22]陳富亮, "最新奈米光觸媒應用技術", 普林斯頓國際有限公司, 台北縣, (2003)
    [23]S. N. Frank, Bard A. J.J. Phys. Chem., (1977)
    [24]李曉平, 徐寶琨, 劉國範等, "功能材料", p.242~245, (1999)
    [25]陶耀武, 趙夢月, 陳士夫等, "催化學報", p.345~347, (1997)
    [26]陳士夫, 趙夢月, 陶耀武等, "環境科學", p.33~35, (1996)
    [27]周祖飛, 蔣偉川, 劉維屏, "環境科學", p.35~37, (1997)
    [28]孫奉玉, 吳鳴, 李文釗等, "催化學報", p.121~124, (1998)
    [29]Okamoto KI, Yamamoto Y, Tamaka H, et al. Bull. Chem. Soc. Jpn. P.2015~2022, (1985)
    [30]Zhang Q H, Gao L and Guo J. Appl. Catal. B:Environ. P.207~215, (2000)
    [31]橋本和仁, 藤嶋昭, "圖解光觸媒のすべて", 日本工業調查會, (2003)
    [32]呂宗昕, "圖解奈米技術與光觸媒", 商周出版, (2003)
    [33]丁志明等, "奈米科技:基礎、應用與實作", 高立圖書, (2005)
    [34]Serpone N., "Solar Energy Materials and Solar Cells", p.369~379, (1995)
    [35]祖庸, 雷閆盈, 李曉娥等, "現代化工", 第19期, p.46~48, (1999)
    [36]伊藤喜昌, "工業材料", p.59~61, (1997)
    [37]Khalil L. B, Mourad W E, Rophael M.W.Appl. Catal. B: Environ. p.267~273, (1998)
    [38]Yamashita H, Ichihashi Y, Anpo M. et al. J. Phys. Chem. p.16041~16044, (1996)
    [39]Yamashita H, Ichihashi Y, Harada M. et al. J. Catal. p.158, 97, (1996)
    [40]簡國明, 洪長春, 吳典熹, 王永銘, 藍怡平, "奈米 TiO2專利地圖及分析",第2輯, 行政院國家科學委員會科技技術資料中心, (2003)
    [41]K.R. Patil, S.D. Sathaye, Y.B. Khollam, S.B. Deshpande, N.R. Pawaskar, A.B. Mandale, "Preparation of TiO2 Tilms by Modified Sping- Coating Method Unsing an Aqueous Precursor", Materials Letters, 57, p.1775-1780, (2003)
    [42]R.S. Sonawanea, S.G. Hegdeb, M.K. Dongare, "Preparation of titanium(IV) oxide thin film photocatalyst by solgel dip coating", Materials Chemistry and Physics, 77, p.744-750, (2003)
    [43]Never Kaliwoh , Jun-Ying Zhang, Ian W. Boyd, "Titanium dioxide films prepared by photo-induced sol–gel processing using 172 nm excimer lamps", Surface and Coatings Technology, 125, p.424-427, (2000)
    [44]H. Sakai , H. Kawahara , M. Shimazaki , M. Abe, "Preparation of Ultrafine Titanium Dioxide Particles Using Hydrolysis and Condensation Reactions in the Inner Aqueous Phase of Reversed Micelles:  Effect of Alcohol Addition", Langmuir, 14, p.2208-2212, (1998)
    [45]J. Yu, J. C. Yu, W. Hoa , Z. Jiang, "Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films", New Journal Chemistry, 22, p.83-89, (2001)
    [46]Y. Tanaka, M. Suganuma, "Effects of Heat Treatment on Photocatalytic Property of Sol-Gel Derived Polycrystalline TiO2", Journal of Sol-Gel Science and Technology , 22, p. 83–89, (2001)
    [47]王世敏, 許祖勛, 傅晶, "奈米材料原理與製備", 五南圖書, 台北市, (2004)
    [48]閻子峰, "奈米催化技術", 五南圖書, 台北市, (2004)
    [49]B.L. Bischoff , M.A. Anderson, "Peptization Process in the Sol-Gel Preparation of Porous Anatase (TiO2) ", Chemistry Material, 7, p.1772-1778, (1995)
    [50]O. Harizanov, A. Harizanova, "Development and investigation of solgel solutions for the formation of TiO2 coatings", Solar Energy Materials and Solar Cells, 63, p.185-195, (2000)
    [51]曹茂盛, 關長斌, 徐甲強, "奈米材料導論", 學富文化, 台北市, (2002)
    [52]ADVANCED BIOMATERIALS LABORATORY, KAIST, Korea, http://biomaterials.kaist.ac.kr/research/research.htm
    [53]林麗娟, "X光繞射原理及其應用", 工業材料雜誌, 第86期, p.100-109, (1994)
    [54]C.H. Chen, E.M. Kelder, "Electrostatic solspray deposition(ESSD) and characterization of nanostruction TiO2 thin films", Thin Solid Films, 342, p.35-41, (1999)
    [55]林智人, "場發射式掃描式電子顯微鏡簡介", 工業材料雜誌, 第181期, 94-99, (2002)
    [56]羅聖全, "掃描式電子顯微鏡(SEM)", 科學研習, NO.52-5, 2-4, (2013)
    [57]SUNWAY SCIENTIFIC CO., "Technical Information", UV/VIS/NIR V670
    [58]ramé-hart instrument co., Technical Information, Contact angl
    [59]Xu Zhao, Manhong Liu, Yongfa Zhu,“Fabrication of porous TiO2 film via hydrothermal method and its photocatalytic performances”, Thin Solid Films, 515, p.71277134, (2007)

    無法下載圖示 本全文未授權公開
    QR CODE