簡易檢索 / 詳目顯示

研究生: 賴信甫
Lai, Hsin-Fu
論文名稱: 探討配體對有機-無機二維鈣鈦礦發光之影響
Ligand Effect toward Luminescence of Two-Dimensional Hybrid Organic-Inorganic Perovskites
指導教授: 劉沂欣
Liu, Yi-Hsin
口試委員: 劉沂欣
Liu, Yi-Hsin
張元賓
Chang, Yuan-Pin
趙宇強
Chao, Yu-Chiang
口試日期: 2022/07/19
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 101
中文關鍵詞: 二維有機-無機鈣鈦礦配體輔助再沉澱法自陷態激子聲子-激子耦合能量轉移
英文關鍵詞: two-dimensional organic-inorganic perovskites, ligand-assisted reprecipitation, self-trapped exciton, exciton-phonon coupling, energy transfer
研究方法: 實驗設計法比較研究
DOI URL: http://doi.org/10.6345/NTNU202201400
論文種類: 學術論文
相關次數: 點閱:109下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功以配體輔助再沉澱法 (ligand-assisted reprecipitation, LARP) 於低溫 (<100 ℃) 合成二維有機-無機鈣鈦礦。引入短碳鏈之乙二胺陽離子 (ethylenediammonium) 作為無機層間之橋接配體,改變合成溫度及反溶劑組合,優化奈米片生長條件,限制奈米片生長。添加與胺類配子形成氫鍵之極性溶劑,提升奈米片之結晶度。使用穿透式電子顯微鏡與高解析粉末X光繞射鑑定二維形貌與晶體結構,此鈣鈦礦半導體之層間距小於1 nm (約0.8 Å),具有強量子侷限效應,表現出極寬之能隙 (約 3.6 eV) 與紫光範圍之螢光 (約392 nm)。經由紅外光譜與擬合X光光電子能譜發現存在多種氮鍵結與鉛氧化態。此有機-無機鈣鈦礦結構在室溫二維螢光光譜能夠表現出多組螢光,其機制係透過激子-聲子耦誘導自陷激子態 (STE) ,調控電子或能量轉移的途徑。另一方面,質子化胺類配體的存在不僅提供了連接相鄰無機層之強作用力,且能與結構中之鉛元素進行光反應。透過元素分析與熱重分析證實結構中之鉛元素具產氫之光催化能力。原子級厚度之二維有機無機鈣鈦礦不僅有良好的光學性質,組成結構之氫鍵作用力提供研究能量轉移的新方法。未來可以做為摻雜具未成對電子過渡金屬之基質,寬能隙能容納更多自旋量子態,發展量子光學或光催化反應之應用。

    In this research, two-dimensional organic-inorganic perovskite was successfully synthesized at low temperature (<100 °C) via ligand-assisted reprecipitation (LARP) method. Ethylenediammonium, short carbon chain cation, was introduced as a bridging ligand to connecting two adjacent inorganic layers. Then, optimization as well as confining the growth of nanosheets were through synthetic temperature and anti-solvent combination. Addition of polar solvent forming hydrogen bonds with diammonium ligand enhanced the crystallinity of the nanosheets. Morphology and crystal structure were characterized via transmission electron microscopy (TEM) and high-resolution powder X-ray diffraction (HRPXRD). Thickness of this perovskite semiconductor less than 1 nm (ca. 0.8 Å) induces strong quantum confinement effect, demonstrating an extremely wide bandgap (ca. 3.6 eV) and violet-range fluorescence (ca. 392 nm). Various nitrogen chemical bond and lead oxidation states were figured out through infrared spectroscopy and deconvolved X-ray photoelectron spectroscopy. We proposed a mechanism that exciton-phonon coupling triggers the formation of self-trapped exciton states (STE) , which regulates the pathway of electron or energy transfer. On the other hand, the presence of protonated amine ligands not only provides a strong force to connect adjacent inorganic layers, but also enables to photoreaction with lead elements in the structure. Through elemental analysis and thermogravimetric analysis, it was confirmed that the lead element in the structure has the photocatalytic ability to produce hydrogen. Atomically thin two-dimensional organic-inorganic perovskites not only have excellent optical properties. In addition, the hydrogen bonding as structural framework provides a new insight for studying energy transfer. In the future, it can be used as a matrix for doping transition metals with unpaired electrons, and the wide bandgap can accommodate multiple spin quantum states, and develop applications of quantum-optics or photocatalytic reactions.

    謝誌 i 摘要 ii Abstract iii 目錄 v 圖索引 ix 表索引 xii 第一章 緒論 1 1.1有機-無機鈣鈦礦半導體之概要 1 1.2 以化學方法製備鹵素鈣鈦礦半導體 2 1.2.1 熱注射法 (hot injection, HI) 2 1.2.2 配體輔助再沉澱法 (ligand-assisted reprecipitation, LARP) 3 1.3 二維鈣鈦礦半導體晶體結構及光學性質 5 1.3.1全無機鈣鈦礦半導體APbX3 5 1.3.2 Ruddlesden-Popper相 (RNH3)2An-1PbnX3n+1 6 1.3.3 Dion-Jacobson相 (R(NH3)2)An-1PbnX3n+1 7 1.4 激子-聲子耦合對光學性質之影響 8 1.4.1氫鍵對結構之影響 11 1.4.2晶體結構調控發光應用 12 1.5 二維單層雙胺類有機-無機鈣鈦礦奈米片之研究動機 13 第二章 實驗方法 14 2.1 化學藥品 14 2.2 銫前驅物之合成 15 2.3 鉛-乙二胺陽離子前驅物之合成 15 2.4 二維鈣鈦礦奈米片之合成及純化 16 2.4.1 銫-鉛前驅物混合溶液 16 2.4.2 沉澱 16 2.4.3 純化 17 2.5 en-2HBr之合成 17 2.6 儀器鑑定 18 2.6.1 穿透式電子顯微鏡(TEM) 18 2.6.2 反射式紫外-可見光吸收光譜儀(DRS) 18 2.6.3 紫外-可見光吸收光譜儀(UV-vis) 19 2.6.4 螢光光譜儀(PL) 19 2.6.5 衰減全反射式傅立葉紅外光譜儀(ATR-FTIR) 19 2.6.6 常溫X光粉末繞射儀(PXRDs) 20 2.6.7 變溫X光粉末繞射儀(PXRDs) 20 2.6.8 熱重分析儀(TGA ) 20 2.6.9 元素分析儀(EA) 21 2.6.10 感應耦合電漿質譜(ICP-MS) 21 2.6.11 化學分析電子能譜儀(ESCA) 21 2.6.12 電子順磁共振光譜儀(EPR) 22 2.7 名稱統整縮寫 22 第三章 結果與討論 22 3.1 二維鈣鈦礦奈米片合成條件之優化 23 3.1.1 合成溫度之探討 24 3.1.2 反溶劑對晶體生長之影響 34 3.1.3 純化方法之比較 45 3.2 二維鈣鈦礦奈米片之鑑定與探討 54 3.2.1 元素組成分析 54 3.2.2 晶體形貌 58 3.2.3 晶體結構與方向優選性 59 3.2.4 化學配位環境 62 3.2.5 電子結構 69 3.2.6 穩定性 74 3.3 激子-聲子耦合對光學性質之影響 78 第四章 結論 84 參考資料 86 附錄 95

    (1) El-Ballouli, A. a. O.; Bakr, O. M.; Mohammed, O. F. Compositional, Processing, and Interfacial Engineering of Nanocrystal- and Quantum-Dot-Based Perovskite Solar Cells. Chem. Mater. 2019, 31 (17), 6387-6411. DOI: 10.1021/acs.chemmater.9b01268.
    (2) Tsai, H.; Nie, W.; Blancon, J.-C.; Stoumpos, C. C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S.; Pedesseau, L.; Even, J.; Alam, M. A.; Gupta, G.; Lou, J.; Ajayan, P. M.; Bedzyk, M. J.; Kanatzidis, M. G.; Mohite, A. D. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 2016, 536 (7616), 312-316. DOI: 10.1038/nature18306.
    (3) Yang, T.; Li, Y.; Han, S.; Xu, Z.; Liu, Y.; Zhang, X.; Liu, X.; Teng, B.; Luo, J.; Sun, Z. Highly-Anisotropic Dion–Jacobson Hybrid Perovskite by Tailoring Diamine into CsPbBr3 for Polarization-Sensitive Photodetection. Small 2020, 16 (14), 1907020. DOI: https://doi.org/10.1002/smll.201907020.
    (4) Akkerman, Q. A.; Motti, S. G.; Srimath Kandada, A. R.; Mosconi, E.; D’Innocenzo, V.; Bertoni, G.; Marras, S.; Kamino, B. A.; Miranda, L.; De Angelis, F.; Petrozza, A.; Prato, M.; Manna, L. Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control. J. Am. Chem. Soc. 2016, 138 (3), 1010-1016. DOI: 10.1021/jacs.5b12124.
    (5) Mao, L.; Stoumpos, C. C.; Kanatzidis, M. G. Two-Dimensional Hybrid Halide Perovskites: Principles and Promises. J. Am. Chem. Soc. 2019, 141 (3), 1171-1190. DOI: 10.1021/jacs.8b10851.
    (6) Wu, Z.; Ji, C.; Li, L.; Kong, J.; Sun, Z.; Zhao, S.; Wang, S.; Hong, M.; Luo, J. Alloying n-Butylamine into CsPbBr3 To Give a Two-Dimensional Bilayered Perovskite Ferroelectric Material. Angew. Chem. Int. Ed. 2018, 57 (27), 8140-8143. DOI: https://doi.org/10.1002/anie.201803716.
    (7) Stoumpos, C. C.; Cao, D. H.; Clark, D. J.; Young, J.; Rondinelli, J. M.; Jang, J. I.; Hupp, J. T.; Kanatzidis, M. G. Ruddlesden–Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. Chem. Mater. 2016, 28 (8), 2852-2867. DOI: 10.1021/acs.chemmater.6b00847.
    (8) Li, X.; Hoffman, J.; Ke, W.; Chen, M.; Tsai, H.; Nie, W.; Mohite, A. D.; Kepenekian, M.; Katan, C.; Even, J.; Wasielewski, M. R.; Stoumpos, C. C.; Kanatzidis, M. G. Two-Dimensional Halide Perovskites Incorporating Straight Chain Symmetric Diammonium Ions, (NH3CmH2mNH3)(CH3NH3)n−1PbnI3n+1 (m = 4–9; n = 1–4). J. Am. Chem. Soc. 2018, 140 (38), 12226-12238. DOI: 10.1021/jacs.8b07712.
    (9) Weidman, M. C.; Seitz, M.; Stranks, S. D.; Tisdale, W. A. Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition. ACS Nano 2016, 10 (8), 7830-7839. DOI: 10.1021/acsnano.6b03496.
    (10) Xiao, B.; Sun, Q.; Wang, S.; Ji, L.; Li, Y.; Xi, S.; Zhang, B.-B.; Wang, J.; Jie, W.; Xu, Y. Two-Dimensional Dion–Jacobson Perovskite (NH3C4H8NH3)CsPb2Br7 with High X-ray Sensitivity and Peak Discrimination of α-Particles. J. Phys. Chem. Lett. 2022, 13 (5), 1187-1193. DOI: 10.1021/acs.jpclett.1c04204.
    (11) Sichert, J. A.; Tong, Y.; Mutz, N.; Vollmer, M.; Fischer, S.; Milowska, K. Z.; García Cortadella, R.; Nickel, B.; Cardenas-Daw, C.; Stolarczyk, J. K.; Urban, A. S.; Feldmann, J. Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets. Nano Lett. 2015, 15 (10), 6521-6527. DOI: 10.1021/acs.nanolett.5b02985.
    (12) Dou, L.; Wong, A. B.; Yu, Y.; Lai, M.; Kornienko, N.; Eaton, S. W.; Fu, A.; Bischak, C. G.; Ma, J.; Ding, T.; Ginsberg, N. S.; Wang, L.-W.; Alivisatos, A. P.; Yang, P. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 2015, 349 (6255), 1518-1521. DOI: doi:10.1126/science.aac7660.
    (13) Mitzi, D. B.; Wang, S.; Feild, C. A.; Chess, C. A.; Guloy, A. M. Conducting Layered Organic-inorganic Halides Containing 〈110〉-Oriented Perovskite Sheets. Science 1995, 267 (5203), 1473-1476. DOI: doi:10.1126/science.267.5203.1473.
    (14) Yin, J.; Maity, P.; Xu, L.; El-Zohry, A. M.; Li, H.; Bakr, O. M.; Brédas, J.-L.; Mohammed, O. F. Layer-Dependent Rashba Band Splitting in 2D Hybrid Perovskites. Chem. Mater. 2018, 30 (23), 8538-8545. DOI: 10.1021/acs.chemmater.8b03436.
    (15) Kepenekian, M.; Even, J. Rashba and Dresselhaus Couplings in Halide Perovskites: Accomplishments and Opportunities for Spintronics and Spin–Orbitronics. J. Phys. Chem. Lett. 2017, 8 (14), 3362-3370. DOI: 10.1021/acs.jpclett.7b01015.
    (16) Kim, M.; Im, J.; Freeman, A. J.; Ihm, J.; Jin, H. Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites. Proc. Natl. Acad. Sci. U.S.A. 2014, 111 (19), 6900-6904. DOI: doi:10.1073/pnas.1405780111.
    (17) Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15 (6), 3692-3696. DOI: 10.1021/nl5048779.
    (18) Pan, A.; He, B.; Fan, X.; Liu, Z.; Urban, J. J.; Alivisatos, A. P.; He, L.; Liu, Y. Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr3 Perovskite Nanocrystals: The Role of Organic Acid, Base, and Cesium Precursors. ACS Nano 2016, 10 (8), 7943-7954. DOI: 10.1021/acsnano.6b03863.
    (19) Teunis, M. B.; Johnson, M. A.; Muhoberac, B. B.; Seifert, S.; Sardar, R. Programmable Colloidal Approach to Hierarchical Structures of Methylammonium Lead Bromide Perovskite Nanocrystals with Bright Photoluminescent Properties. Chem. Mater. 2017, 29 (8), 3526-3537. DOI: 10.1021/acs.chemmater.6b05393.
    (20) Bekenstein, Y.; Koscher, B. A.; Eaton, S. W.; Yang, P.; Alivisatos, A. P. Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies. J. Am. Chem. Soc. 2015, 137 (51), 16008-16011. DOI: 10.1021/jacs.5b11199.
    (21) Sun, S.; Yuan, D.; Xu, Y.; Wang, A.; Deng, Z. Ligand-Mediated Synthesis of Shape-Controlled Cesium Lead Halide Perovskite Nanocrystals via Reprecipitation Process at Room Temperature. ACS Nano 2016, 10 (3), 3648-3657. DOI: 10.1021/acsnano.5b08193.
    (22) Zhang, H.; Yao, J.; Fu, H. Ultrathin Monolayer Mn2+-Alloyed 2D Perovskite Colloidal Quantum Wells. Adv. Optical Mater. 2021, 9 (6), 2001135. DOI: https://doi.org/10.1002/adom.202001135.
    (23) Schmidt, L. C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Mínguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Pérez-Prieto, J. Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. J. Am. Chem. Soc. 2014, 136 (3), 850-853. DOI: 10.1021/ja4109209.
    (24) Dey, A.; Ye, J.; De, A.; Debroye, E.; Ha, S. K.; Bladt, E.; Kshirsagar, A. S.; Wang, Z.; Yin, J.; Wang, Y.; Quan, L. N.; Yan, F.; Gao, M.; Li, X.; Shamsi, J.; Debnath, T.; Cao, M.; Scheel, M. A.; Kumar, S.; Steele, J. A.; Gerhard, M.; Chouhan, L.; Xu, K.; Wu, X.-g.; Li, Y.; Zhang, Y.; Dutta, A.; Han, C.; Vincon, I.; Rogach, A. L.; Nag, A.; Samanta, A.; Korgel, B. A.; Shih, C.-J.; Gamelin, D. R.; Son, D. H.; Zeng, H.; Zhong, H.; Sun, H.; Demir, H. V.; Scheblykin, I. G.; Mora-Seró, I.; Stolarczyk, J. K.; Zhang, J. Z.; Feldmann, J.; Hofkens, J.; Luther, J. M.; Pérez-Prieto, J.; Li, L.; Manna, L.; Bodnarchuk, M. I.; Kovalenko, M. V.; Roeffaers, M. B. J.; Pradhan, N.; Mohammed, O. F.; Bakr, O. M.; Yang, P.; Müller-Buschbaum, P.; Kamat, P. V.; Bao, Q.; Zhang, Q.; Krahne, R.; Galian, R. E.; Stranks, S. D.; Bals, S.; Biju, V.; Tisdale, W. A.; Yan, Y.; Hoye, R. L. Z.; Polavarapu, L. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano 2021, 15 (7), 10775-10981. DOI: 10.1021/acsnano.0c08903.
    (25) Huang, H.; Zhao, F.; Liu, L.; Zhang, F.; Wu, X.-g.; Shi, L.; Zou, B.; Pei, Q.; Zhong, H. Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2015, 7 (51), 28128-28133. DOI: 10.1021/acsami.5b10373.
    (26) Gong, J.; Hao, M.; Zhang, Y.; Liu, M.; Zhou, Y. Layered 2D Halide Perovskites beyond the Ruddlesden–Popper Phase: Tailored Interlayer Chemistries for High-Performance Solar Cells. Angew. Chem. Int. Ed. 2022, 61 (10), e202112022. DOI: https://doi.org/10.1002/anie.202112022.
    (27) Han, Y.; Yue, S.; Cui, B.-B. Low-Dimensional Metal Halide Perovskite Crystal Materials: Structure Strategies and Luminescence Applications. Adv. Sci. 2021, 8 (15), 2004805. DOI: https://doi.org/10.1002/advs.202004805.
    (28) Ricciardulli, A. G.; Yang, S.; Smet, J. H.; Saliba, M. Emerging perovskite monolayers. Nat. Mater. 2021, 20 (10), 1325-1336. DOI: 10.1038/s41563-021-01029-9.
    (29) Mao, L.; Wu, Y.; Stoumpos, C. C.; Wasielewski, M. R.; Kanatzidis, M. G. White-Light Emission and Structural Distortion in New Corrugated Two-Dimensional Lead Bromide Perovskites. J. Am. Chem. Soc. 2017, 139 (14), 5210-5215. DOI: 10.1021/jacs.7b01312.
    (30) Yin, J.; Li, H.; Cortecchia, D.; Soci, C.; Brédas, J.-L. Excitonic and Polaronic Properties of 2D Hybrid Organic–Inorganic Perovskites. ACS Energy Lett. 2017, 2 (2), 417-423. DOI: 10.1021/acsenergylett.6b00659.
    (31) Gao, H.; Feng, W.; Liu, H.; Liu, S.; Wang, Z.; Yao, D.; Liu, Y.; Teng, D.-K.; Yang, B.; Zhang, H. Cesium–Lead Bromide Perovskite Nanoribbons with Two-Unit-Cell Thickness and Large Lateral Dimension for Deep-Blue Light Emission. ACS Appl. Nano Mater. 2020, 3 (5), 4826-4836. DOI: 10.1021/acsanm.0c00873.
    (32) Zou, S.; Liu, Y.; Li, J.; Liu, C.; Feng, R.; Jiang, F.; Li, Y.; Song, J.; Zeng, H.; Hong, M.; Chen, X. Stabilizing Cesium Lead Halide Perovskite Lattice through Mn(II) Substitution for Air-Stable Light-Emitting Diodes. J. Am. Chem. Soc. 2017, 139 (33), 11443-11450. DOI: 10.1021/jacs.7b04000.
    (33) Zhao, Y.; Xie, C.; Zhang, X.; Matras-Postolek, K.; Yang, P. Mn:CsPbBr3 Nanoplatelets for Bright White-Emitting Displays. ACS Appl. Nano Mater. 2021, 4 (6), 6223-6230. DOI: 10.1021/acsanm.1c01016.
    (34) Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 2011, 10 (12), 936-941. DOI: 10.1038/nmat3145.
    (35) Fang, Z.; Shang, M.; Zheng, Y.; Zhang, T.; Du, Z.; Wang, G.; Duan, X.; Chou, K.-C.; Lin, C.-H.; Yang, W.; Hou, X.; Wu, T. Organic intercalation engineering of quasi-2D Dion–Jacobson α-CsPbI3 perovskites. Mater. Horiz. 2020, 7 (4), 1042-1050, 10.1039/C9MH01788G. DOI: 10.1039/C9MH01788G.
    (36) Xu, Z.; Chen, M.; Liu, S. F. First-Principles Study of Enhanced Out-of-Plane Transport Properties and Stability in Dion–Jacobson Two-Dimensional Perovskite Semiconductors for High-Performance Solar Cell Applications. J. Phys. Chem. Lett. 2019, 10 (13), 3670-3675. DOI: 10.1021/acs.jpclett.9b01360.
    (37) Li, S.; Luo, J.; Liu, J.; Tang, J. Self-Trapped Excitons in All-Inorganic Halide Perovskites: Fundamentals, Status, and Potential Applications. J. Phys. Chem. Lett. 2019, 10 (8), 1999-2007. DOI: 10.1021/acs.jpclett.8b03604.
    (38) Vij, D. Luminescence of Solids; 2012.
    (39) Song, K.; Williams, R. T. Self-Trapped Excitons; 2013.
    (40) Smith, M. D.; Karunadasa, H. I. White-Light Emission from Layered Halide Perovskites. Acc. Chem. Res. 2018, 51 (3), 619-627. DOI: 10.1021/acs.accounts.7b00433.
    (41) Hu, T.; Smith, M. D.; Dohner, E. R.; Sher, M.-J.; Wu, X.; Trinh, M. T.; Fisher, A.; Corbett, J.; Zhu, X. Y.; Karunadasa, H. I.; Lindenberg, A. M. Mechanism for Broadband White-Light Emission from Two-Dimensional (110) Hybrid Perovskites. J. Phys. Chem. Lett. 2016, 7 (12), 2258-2263. DOI: 10.1021/acs.jpclett.6b00793.
    (42) Kabanov, V. V.; Mashtakov, O. Y. Electron localization with and without barrier formation. Phys. Rev. B 1993, 47 (10), 6060-6064. DOI: 10.1103/PhysRevB.47.6060.
    (43) Emin, D. Localization and Metal-Insulator Transition; Plenum Publishing Corporation: New York, 1985.
    (44) Dohner, E. R.; Jaffe, A.; Bradshaw, L. R.; Karunadasa, H. I. Intrinsic White-Light Emission from Layered Hybrid Perovskites. J. Am. Chem. Soc. 2014, 136 (38), 13154-13157. DOI: 10.1021/ja507086b.
    (45) Dohner, E. R.; Hoke, E. T.; Karunadasa, H. I. Self-Assembly of Broadband White-Light Emitters. J. Am. Chem. Soc. 2014, 136 (5), 1718-1721. DOI: 10.1021/ja411045r.
    (46) Mao, L.; Wu, Y.; Stoumpos, C. C.; Traore, B.; Katan, C.; Even, J.; Wasielewski, M. R.; Kanatzidis, M. G. Tunable White-Light Emission in Single-Cation-Templated Three-Layered 2D Perovskites (CH3CH2NH3)4Pb3Br10–xClx. J. Am. Chem. Soc. 2017, 139 (34), 11956-11963. DOI: 10.1021/jacs.7b06143.
    (47) Yangui, A.; Garrot, D.; Lauret, J. S.; Lusson, A.; Bouchez, G.; Deleporte, E.; Pillet, S.; Bendeif, E. E.; Castro, M.; Triki, S.; Abid, Y.; Boukheddaden, K. Optical Investigation of Broadband White-Light Emission in Self-Assembled Organic–Inorganic Perovskite (C6H11NH3)2PbBr4. J. Phys. Chem. C 2015, 119 (41), 23638-23647. DOI: 10.1021/acs.jpcc.5b06211.
    (48) Mitzi, D. B.; Dimitrakopoulos, C. D.; Kosbar, L. L. Structurally Tailored Organic−Inorganic Perovskites:  Optical Properties and Solution-Processed Channel Materials for Thin-Film Transistors. Chem. Mater. 2001, 13 (10), 3728-3740. DOI: 10.1021/cm010105g.
    (49) Li, X.; Kepenekian, M.; Li, L.; Dong, H.; Stoumpos, C. C.; Seshadri, R.; Katan, C.; Guo, P.; Even, J.; Kanatzidis, M. G. Tolerance Factor for Stabilizing 3D Hybrid Halide Perovskitoids Using Linear Diammonium Cations. J. Am. Chem. Soc. 2022, 144 (9), 3902-3912. DOI: 10.1021/jacs.1c11803.
    (50) Li, C.; Hsu, S.-C.; Lin, J.-X.; Chen, J.-Y.; Chuang, K.-C.; Chang, Y.-P.; Hsu, H.-S.; Chen, C.-H.; Lin, T.-S.; Liu, Y.-H. Giant Zeeman Splitting for Monolayer Nanosheets at Room Temperature. J. Am. Chem. Soc. 2020, 142 (49), 20616-20623. DOI: 10.1021/jacs.0c05368.
    (51) Guo, Z.; Wu, X.; Zhu, T.; Zhu, X.; Huang, L. Electron–Phonon Scattering in Atomically Thin 2D Perovskites. ACS Nano 2016, 10 (11), 9992-9998. DOI: 10.1021/acsnano.6b04265.
    (52) Ha, S. K.; Shcherbakov-Wu, W.; Powers, E. R.; Paritmongkol, W.; Tisdale, W. A. Power-Dependent Photoluminescence Efficiency in Manganese-Doped 2D Hybrid Perovskite Nanoplatelets. ACS Nano 2021. DOI: 10.1021/acsnano.1c09103.
    (53) Huo, C.; Fong, C. F.; Amara, M.-R.; Huang, Y.; Chen, B.; Zhang, H.; Guo, L.; Li, H.; Huang, W.; Diederichs, C.; Xiong, Q. Optical Spectroscopy of Single Colloidal CsPbBr3 Perovskite Nanoplatelets. Nano Lett. 2020, 20 (5), 3673-3680. DOI: 10.1021/acs.nanolett.0c00611.
    (54) Worku, M.; Tian, Y.; Zhou, C.; Lin, H.; Chaaban, M.; Xu, L.-j.; He, Q.; Beery, D.; Zhou, Y.; Lin, X.; Su, Y.-f.; Xin, Y.; Ma, B. Hollow metal halide perovskite nanocrystals with efficient blue emissions. Sci. Adv. 2020, 6 (17), eaaz5961. DOI: doi:10.1126/sciadv.aaz5961.
    (55) Haris, M. P. U.; Bakthavatsalam, R.; Shaikh, S.; Kore, B. P.; Moghe, D.; Gonnade, R. G.; Sarma, D. D.; Kabra, D.; Kundu, J. Synthetic Control on Structure/Dimensionality and Photophysical Properties of Low Dimensional Organic Lead Bromide Perovskite. Inorg. Chem. 2018, 57 (21), 13443-13452. DOI: 10.1021/acs.inorgchem.8b02042.
    (56) Spanopoulos, I.; Ke, W.; Stoumpos, C. C.; Schueller, E. C.; Kontsevoi, O. Y.; Seshadri, R.; Kanatzidis, M. G. Unraveling the Chemical Nature of the 3D “Hollow” Hybrid Halide Perovskites. J. Am. Chem. Soc. 2018, 140 (17), 5728-5742. DOI: 10.1021/jacs.8b01034.
    (57) Brennan, M. C.; Herr, J. E.; Nguyen-Beck, T. S.; Zinna, J.; Draguta, S.; Rouvimov, S.; Parkhill, J.; Kuno, M. Origin of the Size-Dependent Stokes Shift in CsPbBr3 Perovskite Nanocrystals. J. Am. Chem. Soc. 2017, 139 (35), 12201-12208. DOI: 10.1021/jacs.7b05683.
    (58) Sharma, S. K.; Misra, A. K.; Sharma, B. Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment. Spectrochim. Acta, Part A 2005, 61 (10), 2404-2412. DOI: https://doi.org/10.1016/j.saa.2005.02.020.
    (59) Liu, X.; Luo, Z.; Yin, W.; Litvin, A. P.; Baranov, A. V.; Zhang, J.; Liu, W.; Zhang, X.; Zheng, W. Methanol-induced fast CsBr release results in phase-pure CsPbBr3 perovskite nanoplatelets. Nanoscale Adv. 2020, 2 (5), 1973-1979, 10.1039/D0NA00123F. DOI: 10.1039/D0NA00123F.
    (60) Zhang, X.; Bai, X.; Wu, H.; Zhang, X.; Sun, C.; Zhang, Y.; Zhang, W.; Zheng, W.; Yu, W. W.; Rogach, A. L. Water-Assisted Size and Shape Control of CsPbBr3 Perovskite Nanocrystals. Angew. Chem. Int. Ed. 2018, 57 (13), 3337-3342. DOI: https://doi.org/10.1002/anie.201710869.
    (61) Liu, Y.-H.; Porter, S. H.; Goldberger, J. E. Dimensional Reduction of a Layered Metal Chalcogenide into a 1D Near-IR Direct Band Gap Semiconductor. J. Am. Chem. Soc. 2012, 134 (11), 5044-5047. DOI: 10.1021/ja211765y.
    (62) Sun, J.-K.; Huang, S.; Liu, X.-Z.; Xu, Q.; Zhang, Q.-H.; Jiang, W.-J.; Xue, D.-J.; Xu, J.-C.; Ma, J.-Y.; Ding, J.; Ge, Q.-Q.; Gu, L.; Fang, X.-H.; Zhong, H.-Z.; Hu, J.-S.; Wan, L.-J. Polar Solvent Induced Lattice Distortion of Cubic CsPbI3 Nanocubes and Hierarchical Self-Assembly into Orthorhombic Single-Crystalline Nanowires. J. Am. Chem. Soc. 2018, 140 (37), 11705-11715. DOI: 10.1021/jacs.8b05949.
    (63) Pradhan, B.; Mushtaq, A.; Roy, D.; Sain, S.; Das, B.; Ghorai, U. K.; Pal, S. K.; Acharya, S. Postsynthesis Spontaneous Coalescence of Mixed-Halide Perovskite Nanocubes into Phase-Stable Single-Crystalline Uniform Luminescent Nanowires. J. Phys. Chem. Lett. 2019, 10 (8), 1805-1812. DOI: 10.1021/acs.jpclett.9b00832.
    (64) Cao, D. H.; Stoumpos, C. C.; Farha, O. K.; Hupp, J. T.; Kanatzidis, M. G. 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. J. Am. Chem. Soc. 2015, 137 (24), 7843-7850. DOI: 10.1021/jacs.5b03796.
    (65) Muljarov, E. A.; Tikhodeev, S. G.; Gippius, N. A.; Ishihara, T. Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds. Phys. Rev. B 1995, 51 (20), 14370-14378. DOI: 10.1103/PhysRevB.51.14370.
    (66) Liang, Y.; Cui, X.; Li, F.; Stampfl, C.; Ringer, S. P.; Zheng, R. Atomic and Molecular Hydrogen Impurities in Hybrid Perovskite Solar Cells. J. Phys. Chem. C 2022, 126 (4), 1721-1728. DOI: 10.1021/acs.jpcc.1c10339.
    (67) Wang, L.; Xiao, H.; Cheng, T.; Li, Y.; Goddard, W. A. Pb-Activated Amine-Assisted Photocatalytic Hydrogen Evolution Reaction on Organic–Inorganic Perovskites. J. Am. Chem. Soc. 2018, 140 (6), 1994-1997. DOI: 10.1021/jacs.7b12028.
    (68) He, T.; Xie, J.; Hu, Z.; Liu, T.; Zhang, W.; Chen, H.; Liu, Y.; Zong, K.; Li, M. A Rapid Acid Digestion Technique for the Simultaneous Determination of Bromine and Iodine in Fifty-Three Chinese Soils and Sediments by ICP-MS. Geostand. Geoanal. Res. 2018, 42 (3), 309-318. DOI: https://doi.org/10.1111/ggr.12212.
    (69) Flores, E. M. M.; Mello, P. A.; Krzyzaniak, S. R.; Cauduro, V. H.; Picoloto, R. S. Challenges and trends for halogen determination by inductively coupled plasma mass spectrometry: A review. Rapid Commun. Mass Spectrom. 2020, 34 (S3), e8727. DOI: https://doi.org/10.1002/rcm.8727.
    (70) Hu, J.; Kerner, R. A.; Pelczer, I.; Rand, B. P.; Schwartz, J. Organoammonium-Ion-based Perovskites Can Degrade to Pb0 via Amine–Pb(II) Coordination. ACS Energy Lett. 2021, 6 (6), 2262-2267. DOI: 10.1021/acsenergylett.1c00714.
    (71) Tofanello, A.; Freitas, A. L. M.; de Queiroz, T. B.; Bonadio, A.; Martinho, H.; Souza, J. A. Magnetism in a 2D Hybrid Ruddlesden–Popper Perovskite through Charge Redistribution Driven by an Organic Functional Spacer. J. Phys. Chem. Lett. 2022, 13 (6), 1406-1415. DOI: 10.1021/acs.jpclett.1c04216.
    (72) Sang, Y.-F.; Zeng, H.; Xu, L.-J.; Chen, Z.-N. Radical Hybrids with Multiple Responses to Thermal Stimuli via Electron Transfer. Adv. Funct. Mater. 2022, n/a (n/a), 2206459. DOI: https://doi.org/10.1002/adfm.202206459.
    (73) Šetka, M.; Calavia, R.; Vojkůvka, L.; Llobet, E.; Drbohlavová, J.; Vallejos, S. Raman and XPS studies of ammonia sensitive polypyrrole nanorods and nanoparticles. Sci. Rep. 2019, 9 (1), 8465. DOI: 10.1038/s41598-019-44900-1.
    (74) Tandon, S. P.; Gupta, J. P. Measurement of Forbidden Energy Gap of Semiconductors by Diffuse Reflectance Technique. physica status solidi (b) 1970, 38 (1), 363-367. DOI: https://doi.org/10.1002/pssb.19700380136.
    (75) Blancon, J. C.; Stier, A. V.; Tsai, H.; Nie, W.; Stoumpos, C. C.; Traoré, B.; Pedesseau, L.; Kepenekian, M.; Katsutani, F.; Noe, G. T.; Kono, J.; Tretiak, S.; Crooker, S. A.; Katan, C.; Kanatzidis, M. G.; Crochet, J. J.; Even, J.; Mohite, A. D. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun. 2018, 9 (1), 2254. DOI: 10.1038/s41467-018-04659-x.
    (76) Mao, L.; Ke, W.; Pedesseau, L.; Wu, Y.; Katan, C.; Even, J.; Wasielewski, M. R.; Stoumpos, C. C.; Kanatzidis, M. G. Hybrid Dion–Jacobson 2D Lead Iodide Perovskites. J. Am. Chem. Soc. 2018, 140 (10), 3775-3783. DOI: 10.1021/jacs.8b00542.
    (77) MØLler, C. K. Crystal Structure and Photoconductivity of Cæsium Plumbohalides. Nature 1958, 182 (4647), 1436-1436. DOI: 10.1038/1821436a0.
    (78) Spanopoulos, I.; Hadar, I.; Ke, W.; Guo, P.; Mozur, E. M.; Morgan, E.; Wang, S.; Zheng, D.; Padgaonkar, S.; Manjunatha Reddy, G. N.; Weiss, E. A.; Hersam, M. C.; Seshadri, R.; Schaller, R. D.; Kanatzidis, M. G. Tunable Broad Light Emission from 3D “Hollow” Bromide Perovskites through Defect Engineering. J. Am. Chem. Soc. 2021, 143 (18), 7069-7080. DOI: 10.1021/jacs.1c01727.
    (79) Ke, W.; Stoumpos, C. C.; Zhu, M.; Mao, L.; Spanopoulos, I.; Liu, J.; Kontsevoi, O. Y.; Chen, M.; Sarma, D.; Zhang, Y.; Wasielewski, M. R.; Kanatzidis, M. G. Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI3. Sci. Adv. 2017, 3 (8), e1701293. DOI: doi:10.1126/sciadv.1701293.
    (80) Peng, J.; Xia, C. Q.; Xu, Y.; Li, R.; Cui, L.; Clegg, J. K.; Herz, L. M.; Johnston, M. B.; Lin, Q. Crystallization of CsPbBr3 single crystals in water for X-ray detection. Nat. Commun. 2021, 12 (1), 1531. DOI: 10.1038/s41467-021-21805-0.
    (81) Brozek, C. K.; Michaelis, V. K.; Ong, T.-C.; Bellarosa, L.; López, N.; Griffin, R. G.; Dincă, M. Dynamic DMF Binding in MOF-5 Enables the Formation of Metastable Cobalt-Substituted MOF-5 Analogues. ACS Cent. Sci. 2015, 1 (5), 252-260. DOI: 10.1021/acscentsci.5b00247.
    (82) Hong, X.; Ishihara, T.; Nurmikko, A. V. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B 1992, 45 (12), 6961-6964. DOI: 10.1103/PhysRevB.45.6961.
    (83) Zhang, Z.; Fang, W.-H.; Tokina, M. V.; Long, R.; Prezhdo, O. V. Rapid Decoherence Suppresses Charge Recombination in Multi-Layer 2D Halide Perovskites: Time-Domain Ab Initio Analysis. Nano Lett. 2018, 18 (4), 2459-2466. DOI: 10.1021/acs.nanolett.8b00035.
    (84) Miyata, K.; Meggiolaro, D.; Trinh, M. T.; Joshi, P. P.; Mosconi, E.; Jones, S. C.; Angelis, F. D.; Zhu, X.-Y. Large polarons in lead halide perovskites. Sci. Adv. 2017, 3 (8), e1701217. DOI: doi:10.1126/sciadv.1701217.
    (85) Duan, H.-G.; Tiwari, V.; Jha, A.; Berdiyorov, G. R.; Akimov, A.; Vendrell, O.; Nayak, P. K.; Snaith, H. J.; Thorwart, M.; Li, Z.; Madjet, M. E.; Miller, R. J. D. Photoinduced Vibrations Drive Ultrafast Structural Distortion in Lead Halide Perovskite. J. Am. Chem. Soc. 2020, 142 (39), 16569-16578. DOI: 10.1021/jacs.0c03970.
    (86) Yaffe, O.; Chernikov, A.; Norman, Z. M.; Zhong, Y.; Velauthapillai, A.; van der Zande, A.; Owen, J. S.; Heinz, T. F. Excitons in ultrathin organic-inorganic perovskite crystals. Phys. Rev. B 2015, 92 (4), 045414. DOI: 10.1103/PhysRevB.92.045414.
    (87) Toyozawa, Y. Self-localization of elementary excitations. Appl. Opt. 1980, 19 (23), 4101-4103. DOI: 10.1364/AO.19.004101.
    (88) Zhang, T.; Zhou, C.; Feng, X.; Dong, N.; Chen, H.; Chen, X.; Zhang, L.; Lin, J.; Wang, J. Regulation of the luminescence mechanism of two-dimensional tin halide perovskites. Nat. Commun. 2022, 13 (1), 60. DOI: 10.1038/s41467-021-27663-0.

    下載圖示
    QR CODE