簡易檢索 / 詳目顯示

研究生: 周晁霈
Chou, Tsao-Pei
論文名稱: 以理論角度探討有機發光二極體使其有效增加三重態激子轉換至單重態與應用
Towards Efficient Up-Conversion of Triplet Excitons into a Singlet State and Its Application for OLEDs-A Theoretical Perspective
指導教授: 李祐慈
Li, Yu-Tzu
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 112
中文關鍵詞: 有機發光二極體重原子效應自旋-軌道耦合作用力逆向系統間跨越螢光熱活化型延遲螢光
英文關鍵詞: reverse intersystem crossing, thermally activated delayed fluorescence(TADF)
論文種類: 學術論文
相關次數: 點閱:247下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在光電元件中,有機金屬錯合物佔據大部分的市場,但也造成價格不菲主因。反觀近幾年,有機材料的部分,純的有機系統之熱活化行延遲螢光 性質與設計及在光電應用也蓬勃發展起來。為了深入解有機分子材料的光物理特性,可以透過理論計算的方式來研究,使其在未來應用上有重大突破。
    本論文將探討有機分子系統之光物理性質,特別針對有機分子中透過異碳原子(如:硫、氧)所產生Tm到Sn之間逆向系統間跨越(Reverse Intersystem crossing,RISC)而形成TADF機制之影響參數進行研究。高原子序之異碳原子的重原子效應產生之強自旋-軌道交互作用力 (spin -orbit coupling, SOC),可以增強逆向系統間跨越的效率,使其有利於讓三重態激子回到單重態放出螢光。若能有效的提升逆向系統間跨越的效率,就可間接提高有機系統放光的量子產率,因此RISC速率的 大小是很多光電材料應用上關鍵因素。本篇將對各種不同類別的包含異 碳原子之分子系統進行討論,以理論計算方法預測這些異碳原子對系統的SOC與ΔEST的影響,並與分子的結構影響做比較。最終希望能找出影響 有機系統關鍵因素且創造出一個具有小的ΔEST與較高的SOC。我們主要以 氧(Oxygen)、硫(Sulfur)及硼(Boron)等含異碳原子系統為討論對象,探討我們將著重在電荷轉移激發態(CT)、nπ*和ππ*激發態的定量與定性分析上 。
    本篇將針對以下幾點進行討論,包含電子結構、鍵長、電子躍遷性質、單重態與三重態能階差等,也對高TADF放光效率的有機分子系統進行一系列的探討。

    In the field of light emitting diodes, organometallic complexes have the largest contribution, but these systems are usually toxic and suffer from high production costs. On the other hand, in recent years, pure organic materials receive a lot of attention due to the “thermally activated delayedfluorescence” (TADF) phenomenon. To better understand the photophysical properties of organic molecular materials, in this thesis, we perform theoretical calculations to study the properties of emissive organic systems and propose molecular design principles for future photovoltaic applications.
    In this thesis, we investigate the photophysical properties of organic molecular systems, especially for organic molecules containing heteroatoms. The rate of reverse intersystem crossing (RISC) from a triplet state (Tm) to a singlet state (Sn), which governs the mechanism of TADF, is studied. We explore the heavy atom effect originated from heavy heteroatoms that cause strong spin-orbit coupling (SOC) effect in the hope that it will enhance the efficiency of RISC pathway. A variety of different types of molecular systems containing heteroatoms are discussed via theoretical calculations. The effect of these heteroatoms are evaluated via the SOC integral and ΔE, the energy gap between low-lying singlet and triplet excited states. The influence ofthe molecular structure is also examined. Ultimately, we intend to find the key factors that ensure a small ΔE and a large SOC, which lead to strong TADF in pure organic systems. Oxygen, sulfur and boron are the major heteroatoms discussed in this thesis.Qualitative and quantitative analysesof the charge transfer (CT), ππ*, andππ* states are performed. In particular, we would focus on properties such as the electronic structure, bond lengths, nature of the electronic transitions, singlet and triplet state energy levels, and etc.

    圖目錄 V 摘要 X Abstract 11 第一章 緒論 13 1-1 前言 13 1-2有機發光二極體的架構與材料 14 1-3 OLED裝置中的發光材料種類 16 1-4材料的起源與結構的功能 18 1-5放光的機制的種類以及優劣 25 1-6研究目標 31 第二章 計算理論與方法 33 2-1光的特性 33 2-2電子軌域、組態、跟能態與磁場的作用 35 2-3自旋-軌道耦合作用力 42 2-4有機分子系統的計算方法 46 2-5使用軟體與程序 50 2-6本篇所採用的方法與參數 55 第三章 典型芳香族有機分子系統的自旋軌道耦合作用以及逆向系統間跨越探討 57 3-1前言 57 3-2含有氧的有機系統與平面性探討 62 3-3分子內電荷轉移(Intramolecular Charge Transfer,ICT)與n-π*的混合 73 3-4結論 79 第四章 以重原子效應增強自旋軌道耦合作用之策略探討 81 4-1前言 81 4-2氧與硫的同族之間性質比較 81 4-3硫的分子軌域與SOC大小探討 83 4-4熒光素上氧替換成硫的探討 86 4-5硫酮及衍生物ΔEST與SOC的探討 88 4-6結論 92 第五章 以分子構型調控系統間跨越速率之策略探討 94 5-1前言 94 5-2具有推拉電子基的分子探討 94 5-3總合上述的結論並設計出新的分子系統 101 5-4結論 104 結論與未來展望 105 附錄 107 參考文獻 110

    (1) Shinar, J. Organic light-emitting devices; Springer: New York :, 2004.
    (2) Yersin, H. Highly efficient OLEDs with phosphorescent materials; Wiley-VCH: Weinheim :, 2008.
    (3) Yersin, H. 2004, 241, 1.
    (4) Duan, L.; Qiao, J.; Sun, Y.; Qiu, Y. Adv. Mater. 2011, 23, 1137-1144.
    (5) Wang, J.; Han, C.; Xie, G.; Wei, Y.; Xue, Q.; Yan, P.; Xu, H. Chemistry 2014, 20, 11137-11148.
    (6) Chiang, C. L.; Tseng, S. M.; Chen, C. T.; Hsu, C. P.; Shu, C. F. Adv. Funct. Mater. 2008, 18, 248-257.
    (7) Wu, C.-c.; Liu, T.-L.; Hung, W.-Y.; Lin, Y.-T.; Wong, K.-T.; Chen, R.-T.; Chen, Y.-M.; Chien, Y.-Y. J. Am. Chem. Soc. 2003, 125, 3710-3711.
    (8) Pope, M.; Kallmann, H. P.; Magnante, P. The Journal of Chemical Physics 1963, 38, 2042-2043.
    (9) Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913-915.
    (10) Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.; Miyazaki, H.; Adachi, C. Appl. Phys. Lett. 2011, 98, 083302.
    (11) Mehes, G.; Nomura, H.; Zhang, Q.; Nakagawa, T.; Adachi, C. Angew. Chem. Int. Ed. Engl. 2012, 51, 11311-11315.
    (12) Nakagawa, T.; Ku, S. Y.; Wong, K. T.; Adachi, C. Chem Commun (Camb) 2012, 48, 9580-9582.
    (13) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234-238.
    (14) Kondo, R.; Yasuda, T.; Yang, Y. S.; Kim, J. Y.; Adachi, C. J. Mater. Chem. 2012, 22, 16810.
    (15) Lin, S.-L.; Chan, L.-H.; Lee, R.-H.; Yen, M.-Y.; Kuo, W.-J.; Chen, C.-T.; Jeng, R.-J. Adv. Mater. 2008, 20, 3947-3952.
    (16) Nakai, H.; Kawai, M. The Journal of Chemical Physics 2000, 113, 2168-2174.
    (17) Masahiko Fukuda, K. S. a. K. Y. Jpn. J. Appl. Phys. 1989, 28, L1433-L1435.
    (18) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539-541.
    (19) Grell, M.; Knoll, W.; Lupo, D.; Meisel, A.; Miteva, T.; Neher, D.; Nothofer, H.-G.; Scherf, U.; Yasuda, A. Adv. Mater. 1999, 11, 671-675.
    (20) Grice, A. W.; Bradley, D. D. C.; Bernius, M. T.; Inbasekaran, M.; Wu, W. W.; Woo, E. P. Appl. Phys. Lett. 1998, 73, 629-631. 111

    (21) Bernius, M. T.; Inbasekaran, M.; O'Brien, J.; Wu, W. Adv. Mater. 2000, 12, 1737-1750.
    (22) Redecker, M.; Bradley, D. D. C.; Inbasekaran, M.; Woo, E. P. Appl. Phys. Lett. 1999, 74, 1400-1402.
    (23) Grell, M.; Bradley, D. D. C.; Long, X.; Chamberlain, T.; Inbasekaran, M.; Woo, E. P.; Soliman, M. Acta Polym. 1998, 49, 439-444.
    (24) Chen, X.-K.; Zhang, S.-F.; Fan, J.-X.; Ren, A.-M. The Journal of Physical Chemistry C 2015, 119, 9728-9733.
    (25) Mizuno, Y.; Takasu, I.; Uchikoga, S.; Enomoto, S.; Sawabe, T.; Amano, A.; Wada, A.; Sugizaki, T.; Yoshida, J.; Ono, T.; Adachi, C. The Journal of Physical Chemistry C 2012, 116, 20681-20687.
    (26) Pan, Y.; Li, W.; Zhang, S.; Yao, L.; Gu, C.; Xu, H.; Yang, B.; Ma, Y. Advanced Optical Materials 2014, 2, 510-515.
    (27) Wu, C.-C.; Liu, T.-L.; Lin, Y.-T.; Hung, W.-Y.; Ke, T.-H.; Wong, K.-T.; Chao, T.-C. Appl. Phys. Lett. 2004, 85, 1172-1174.
    (28) McGlynn, S. P.; Smith, F. J.; Cilento, G. Photochem. Photobiol. 1964, 3, 269-294.
    (29) Turro, N. J. Modern molecular photochemistry; Benjamin/Cummings Pub. Co.: Menlo Park, Calif. :, 1978.
    (30) Kawaoka, K.; Khan, A. U.; Kearns, D. R. The Journal of Chemical Physics 1967, 46, 1842-1853.
    (31) Endo, A.; Ogasawara, M.; Takahashi, A.; Yokoyama, D.; Kato, Y.; Adachi, C. Adv. Mater. 2009, 21, 4802-4806.
    (32) Born, M.; Oppenheimer, R. Annalen der Physik 1927, 389, 457-484.
    (33) Fraga, S.; Karwowski, J.; Saxena, K. M. S. Handbook of atomic data; Elsevier Scientific Pub. Co.: New York, 1976.
    (34) Koseki, S.; Schmidt, M. W.; Gordon, M. S. The Journal of Physical Chemistry 1992, 96, 10768-10772.
    (35) Schmidt, K.; Brovelli, S.; Coropceanu, V.; Beljonne, D.; Cornil, J.; Bazzini, C.; Caronna, T.; Tubino, R.; Meinardi, F.; Shuai, Z.; Brédas, J.-L. The Journal of Physical Chemistry A 2007, 111, 10490-10499.
    (36) https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/UV-Vis/spectrum.htm#uv3.
    (37) Tatchen, J.; Gilka, N.; Marian, C. M. PCCP 2007, 9, 5209.
    (38) Zhou, P.; Liu, J.; Yang, S.; Chen, J.; Han, K.; He, G. Phys. Chem. Chem. Phys. 2012, 14, 15191-15198.
    (39) Wang, K. B. W. a. Y. ARKIVOC 2010, 2011, 45-56.
    (40) Leitl, M. J.; Krylova, V. A.; Djurovich, P. I.; Thompson, M. E.; Yersin, H. J. Am. Chem. Soc. 2014, 136, 16032-16038.

    無法下載圖示 本全文未授權公開
    QR CODE