簡易檢索 / 詳目顯示

研究生: 黃庭影
Huang, Ting Ying
論文名稱: 改良式雙向聯想記憶類神經網路加解密之研究
The Improvement of Encryption and Decryption on Bi-directional Association Memory based Neural Network
指導教授: 莊謙本
Chuang, Chien-Pen
周明
Jou, Min
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 95
中文關鍵詞: 人工類神經網路雙向聯想記憶加解密模型偽狀態空間變換完美秘密安全性程度
英文關鍵詞: Artificial Neural Network (ANN), Bi-directional Association Memory (BAM), Cryptosystem, spurious states, space transformation, perfect secrecy, security
論文種類: 學術論文
相關次數: 點閱:274下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去在加解密模型上的演算法大都著重於邏輯式的演算法,在建構加解密系統上較為複雜,且架構不具廣義性。由於已經有研究者提出模仿生物神經系統的人工類神經網路架構(Architecture of Artificial Neural Network, ANN)為基礎下的加解密模型(Back-propagation and Overstoraged Hopfiled Neural Network(OHNN))進行加解密,但都有其限制(例如:加密量的限制、解密後資料完整性的限制、穩定度的限制等限制因素)。
    本論文提出應用類神經網路雙向聯想記憶(Bi-directional Association Memory, BAM)的演算方法建構加解密模型進行加解密,此方法使得加解密模型在建構上具有簡便性及廣義性,並且利用BAM的雙向狀態穩定的特性解決穩定度的限制。由於BAM主要利用區域極小值(local minima)儲存資料,且其學習規則是採用Hebbian 學習法,因此可能使網路能量區域極小值的數量超過原先儲存的資料量,而造成偽狀態(spurious states)的情況發生,使得資訊喪失資料完整性的原則。為了解決上述的問題,故配合空間變換(space transformation)的概念,得以避開偽狀態的影響並且增加加密量、確保解密後資料完整性的原則、降低解密時間。再利用Shannon所提出的完美秘密(perfect secrecy)的概念量化證明本系統的安全性(security)程度。

    Most algorithms developed for encryption and decryption were concentrated on logic analysis. But it is complex for system construction and difficult to apply wide-spread. Recently, even though biomimetic-based architecture of artificial neural network was proposed to improve reliability and performance of encryption methods such as back-propagation and overstoraged Hopfield Neural Network were developed to fulfill this expectation. But the limitations of encryption capacity, complexity and data completeness after decryption, reliability are still needed to overcome.
    This paper proposed a new algorithm to improve reliability and convenience of encryption and decryption with reformed Bi-directional Association Memory (BAM) model to reduce spurious states and data separation caused by former local minima information analysis based on Hebbian learning rule. The space transformation was used to escape crosstalk and noise vector caused by spurious states to keep the completeness of processed information in addition to enhance its security. MATLAB simulation model was used to testify the performance of BAM cryptosystem. The experimental results showed that the security of this proposed system has been improved by Shannon’s perfect secrecy conception.

    目 錄 誌 謝 i 摘 要 ii Abstract iii 目 錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 論文結構 3 第二章 密碼系統技術及架構簡介 4 2.1 密碼學基本概念簡介 4 2.1.1 加解密碼系統基本概念 4 2.1.2 密碼系統的安全程度 5 2.1.3 密碼系統的分類 6 2.2 古代密碼系統簡介 7 2.3 近代密碼系統簡介 7 2.3.1 DES密碼系統簡介 7 2.3.2 ECB密碼系統簡介 10 2.3.3 CFB密碼系統簡介 10 2.3.4 OFB密碼系統簡介 11 2.3.5 三重DES密碼系統簡介 12 2.4 新一代密碼系統簡介 13 2.5 類神經網路的加解密系統 14 第三章 類神經網路與雙向聯想記憶原理介紹 20 3.1 類神經網路簡介 20 3.2 類神經網路基本種類、原理與學習規則介紹 22 3.3 雙向聯想記憶式類神經網路 27 第四章 雙向聯想記憶式類神經網路加解密模型 33 4.1 雙向聯想記憶式類神經網路加解密模型基本架構 33 4.2 數學模型 36 4.3 實驗結果與討論 37 4.4 本章結論 41 第五章 改良式雙向聯想記憶類神經網路加解密模型 43 5.1 改良式雙向聯想記憶加解密模型基本架構 43 5.2 數學模型 46 5.3 實驗結果與討論 48 5.4 本章結論 77 第六章 安全性之評估 78 6.1 保密程度與金鑰長度 78 6.2 加解密演算法的運算複雜度 83 6.3 明文擴充 84 6.4 本章結論 84 第七章 結論與建議 85 7.1 結論 85 7.2 後續研究之建議 85 參考文獻 86 圖目錄 圖2.1 基本密碼系統架構 4 圖2.2 DES加解密架構 8 圖2.3 DES之金鑰產生運算過程 9 圖2.4 ECB加解密模式 10 圖2.5 CFB加密模式 11 圖2.6 CFB解密模式 11 圖2.7 OFB加解密模式 12 圖2.8 3DES加密架構 13 圖2.9 霍普菲爾類神經網路為基礎的加密架構 16 圖2.10 霍普菲爾類神經網路為基礎的解密架構 17 圖2.11 神經元數對計算私密金鑰執行效率之結果 18 圖2.12 倒傳遞類神經網路為基礎之加解密架構 19 圖2.13 網路之容許誤差曲線圖 19 圖3.1 神經細胞示意圖 21 圖3.2 仿人類神經細胞資訊處理示意圖 21 圖3.3 生物典型神經元示意圖 21 圖3.4 類神經元(Artificial Neuron)的模型 22 圖3.5 單層前饋網路 24 圖3.6 多層前饋網路 24 圖3.7 循環式網路(recurrent networks) 24 圖3.8 二維3x4晶格狀網路(lattice networks) 25 圖3.9 線性聯想記憶類神經網路示意圖 29 圖3.10 BAM基本架構 31 圖3.11 能量分佈及收斂情況示意圖 32 圖4.1 BAM加密模型架構 33 圖4.2 加密狀態空間能量流向分佈示意圖 34 圖4.3 BAM解密模型架構 35 圖4.4 解密狀態空間能量流向分佈示意圖 36 圖4.5 第一次加解密結果圖 38 圖4.6 第二次加解密結果圖 38 圖4.7 第三次加解密結果圖 39 圖4.8 解密時發生spurious states示意圖 40 圖5.1 改良式BAM加密模型架構 43 圖5.2 改良式BAM解密模型架構 44 圖5.3 解密時避開spurious states示意圖 48 圖5.4 第一次加密(明文等於密文字串長度,i=j=13) 49 圖5.5 第二次加密(明文等於密文字串長度,i=j=13) 50 圖5.6 第三次加密(明文等於密文字串長度,i=j=13) 51 圖5.7 第一次加密(明文大於密文字串長度,i=13,j=7) 52 圖5.8 第二次加密(明文大於密文字串長度,i=13,j=7) 53 圖5.9 第三次加密(明文大於密文字串長度,i=13,j=7) 54 圖5.10 第一次加密(明文小於密文字串長度,i=13,j=16) 55 圖5.11 第二次加密(明文小於密文字串長度,i=13,j=16) 56 圖5.12 第三次加密(明文小於密文字串長度,i=13,j=16) 57 圖5.13 第一次加密(明文等於密文字串長度,i=j=17) 60 圖5.14 第二次加密(明文等於密文字串長度,i=j=17) 61 圖5.15 第三次加密(明文等於密文字串長度,i=j=17) 62 圖5.16 第一次加密(明文大於密文字串長度,i= 17,j=16) 63 圖5.17 第二次加密(明文大於密文字串長度,i= 17,j=16) 64 圖5.18 第三次加密(明文大於密文字串長度,i= 17,j=16) 65 圖5.19 第一次加密(明文小於密文字串長度,i= 17,j=21) 66 圖5.20 第二次加密(明文小於密文字串長度,i= 17,j=21) 67 圖5.21 第三次加密(明文小於密文字串長度,i= 17,j=21) 68 圖5.22 增加明文長度(明文等於密文字串長度i= j=215) 71 圖5.23 增加明文長度(明文大於密文字串長度i= 215,j=7) 72 圖5.24 增加明文長度(明文小於密文字串長度i= 215,j=225) 73 圖5.25 將圖5.22局部放大 74 圖6.1 利用空間變換法解密之概念圖 79 圖6.2 產生金鑰之流程 79 圖6.3 暴力破解法破解金鑰所需的時間示意圖 83 表目錄 表2.1 15個AES初選演算法及申請人(單位) 14 表3.1 常見的四種活化函數 23 表3.2 BAM回想過程步驟 31 表4.1 系統環境 37 表4.2 加解密所得結果 41 表5.1 總結圖5.4到圖5.12加解密所得結果 59 表5.2 總結圖5.13到圖5.21加解密所得結果 70 表5.3 增加明文長度加解密所得結果 76 表6.1 暴力破解法破解金鑰所需的時間 82 表6.2 改良前與改良後系統之比較 84

    [1] 黃明祥、林詠章 著, “資訊與網路安全概論:建構安全的電子商務系統(Introduction to Information and Network Security)”, McGraw-Hill, Inc. 2005。
    [2] Niansheng Liu and Doinghui Guo,“ Security Analysis of Public-key Encryption Scheme Based on Neural Networks and Its Implementing”, Computational Intelligence and Security, 2006 International Conference on Volume 2, 3-6 Nov. 2006 Page(s):1327 – 1330.
    [3] Duan Suoli, Wang Shuzhao and Yang Xiaokuo, “Research on Signal’s Encryption and Decryption Using Nonlinear System and its Inversion” , Electronic Measurement and Instruments, 2007. ICEMI '07. 8th International Conference on Aug. 16 2007-July 18 2007 Page(s):3-870 - 3-873.
    [4] Bart Kosko, “Bidirectional Associative Memories” , IEEE Transactions on System, Man, and Cybernetics, Vol. 18, No. 1, January/February 1988.
    [5] 蘇木春、張孝德 編著,“機械學習:類神經網路、模糊系統以及基因演算法則(修訂二版)”, 全華科技圖書股份有限公司,2006年3月。
    [6] 陳彥銘、林秉忠 著, “802.11無線網路安全白皮書”,台灣電腦網路危機處理暨協調中心,民92年2月。
    [7] Atul Kahate 原著, 黃明祥 校閱,楊政穎 編譯,”網路安全與密碼學(Cryptography and Network Security)”, McGraw-Hill, Inc. 2006。
    [8] http://64.62.138.83/i1/030101_sci_stain.jpg
    [9] http://life.nthu.edu.tw/~g864264/Neuroscience/neuron/cell.htm
    [10] 鍾慶豐 著, “近代密碼學與其應用”, 儒林圖書有限公司, 2005年6月。
    [11] 王進德 編著, “類神經網路與模糊控制理論入門與應用”, 全華科技圖書股份有限公司,2006。
    [12] 周鵬程 編著, “類神經網路入門:活用MATLAB”, 全華科技圖書股份有限公司, 2006。
    [13] 沈淵源 編著, “密碼學之旅與MATHEMATIC同行”, 全華科技圖書股份有限公司,,2006年2月。
    [14] 鄧安文 編著, “密碼學-加密演算法與密碼分析計算實驗(Cryptography-Algorithms on Ciphers, Cryptanalysis and Computational Experiment)” ,全華科技圖書股份有限公司, 2006年10月。
    [15] Miao Zhenjiang, Yuan Baozong, “An Extended BAM Neural Network Model”, Neural Networks, 1993. IJCNN '93-Nagoya. Proceedings of 1993 International Joint Conference on Volume 3, 25-29 Oct. 1993 Page(s):2682 - 2685 vol. 3.
    [16] C. S. Leung, “Encoding Method for Bidirectional Associative Memory Using Projection on Convex Sets”, Neural Networks, IEEE Transactions on Volume 4, Issue 5, Sept. 1993 Page(s):879 – 881.
    [17] George J. Klir and Bo Yuan, “Fuzzy Sets and Fuzzy Logic Theory and Applications”, Prentice-Hall International, Inc. 1995.
    [18] Shanguang CHEN, Jinhe WEI, Yongjum ZHANG, Yong BAO, “A New Model for Bidirectional Associative Memories”, Neural Networks, 1996., IEEE International Conference on Vol. 1, 3-6 June 1996 Page(s):594 - 599 vol. 1.
    [19] Timothy J. Ross, “Fuzzy Logic with Engineering Applications, International Edition”, McGraw-Hill, Inc. 1997.
    [20] Henry Stark and Yongyi Yang, “Vector Space Projects: A Numerical Approach to Signal and Image Processing, Neural Nets, and Optics”, John Wiley & Sons, Inc. 1998.
    [21] Simon Haykin, “Neural Networks: A Comprehensive Foundation, 2nd Edition”, Prentice Hall International, Inc. 1999.
    [22] Mark Ciampa, “Security+Guide to Network Security Fundamentals, 2e” Thomson Learning Company, 2005.
    [23] Satish Kumar, “Neural Networks - A Classroom Approach”, McGraw-Hill Inc. 2005.
    [24] Hichael Negnevitsky, “Artificial Intelligence: A Guide to Itelligent System, 2nd Edition”, Addison-Wesley, 2005.

    下載圖示
    QR CODE