簡易檢索 / 詳目顯示

研究生: 徐睿翔
Ruei-Siang Syu
論文名稱: Sub-100nm及更先進製程之退火負載效應
The Pattern Loading Effect and Photon Response of Sub-100nm Devices and Advance Processing
指導教授: 李敏鴻
Lee, Min-Hung
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 102
中文關鍵詞: 退火快速熱退火雷射模擬
英文關鍵詞: anneal, RTA, laser, simulation
論文種類: 學術論文
相關次數: 點閱:228下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最近十五年以來,快速熱退火製程時的圖案效應已經廣泛的被研究,可是這僅僅只能達到現在的元件生產要求,這類的RTA負載效應的研究與評估對於未來更先進的製程都是有相當難度的。隨著元件尺寸縮小,我們需要選擇新的退火技術來符合下個世代的工業科技。先進的退火技術,例如 Flash Lamp 退火(FLA)與雷射退火 (Laser) 將提供改善摻雜濃度的活化程度並減少雜質擴散(Transient Enhance Diffusion, TED)以達到超淺接面需求,針對源極,汲極與閘極區域部分,更勝於尖峰快速熱退火(spike RTA)技術。此時間小於千分之一秒的退火技術,通常寄予希望的,來藉此符合先進的CMOS製程技術。短時間的區隔尖峰快速熱退火和時間小於千分之一秒的退火技術在溫度上升時,在表面及局部的溫度分部將有明顯的影響藉著局部的設計圖形,這將可以歸因於矽的本質熱傳導係數和較短的側面熱的擴散長度。除此之外,我們將模擬在有圖型負載效應下的元件電性。 於是我們得到一個最佳化的情況就是在Laser 與FLA 的退火條件下,poly space 的間隔為0.22微米時為最佳化條件。而且此退火之負載效應在對於NMOS元件更勝於PMOS元件。

    Pattern effects of RTA (Rapid Thermal Process) have been extensively studied for the last 15 years, but have only recently attained focus in device production. The detection and the evaluation of RTA pattern effects are difficult to reach the requirement of deep sub-micro meter technology node or more. With the devices scaling down, the new annealing method is necessary for next generation technologies. For flash lamp annealing (FLA) and laser annealing of the advanced annealing techniques are not only improve dopant activation for source-drain and gate polysilicon regions, but also be retarded the effect of TED (transient enhance diffusion) to obtain ultra shallow junction, as compare with the spike rapid thermal annealing (sRTA) techniques. The sub-millisecond annealing is also expected to attain the demand of advanced CMOS technology. Due to the intrinsic thermal conductivity of Si and shorter lateral thermal diffusion length, the temperature of nearly local/surface will be highly influenced by the local laylout geometry for the short time interval spike RTA and sub-millisecond annealing techniques with temperature increasing. Besides, we also simulate the electrical characteristics by pattern loading effect and show the optimized poly space of 0.22 m for Flash and Laser annealing. NMOS is more sensitive to poly spaces loading effect than that of PMOS.

    Publication List .........................................i Acknowledge (Chinese) ..................................iii Chinese Abstract .........................................v English Abstract ........................................vi Contents ...............................................vii List of Figures ..........................................x List of Tables ..........................................xv Chapter 1 Introduction...................................1 1.1Motivation.............................................1 1.2Dissertation Organization..............................6 1.3References............................................ 7 Chapter 2 The Heat Transportation and Anneal Techniques..8 2.1Thermal Conduction ....................................8 2.2Thermal Convection ...................................10 2.3Thermal Radiation ....................................12 2.3.1The Emissivity and Absorptivity ....................13 2.3.2Absorption Coefficient of Si........................14 2.4Anneal Techniques.....................................19 2.4.1RTA ................................................19 2.4.2Laser Annealing ....................................19 2.4.3Flash Lamp Annealing ...............................20 2.5References ...........................................22 Chapter 3 Modeling of Electrical Characteristics by Poly Spaces Loading Effect in RTA and Sub-Millisecond Annealing................................................23 3.1TCAD Tools............................................23 3.1.1Workbench ..........................................23 3.1.2Process ............................................25 3.1.3Structure Editor ...................................26 3.1.4Device .............................................27 3.2Simulation Description ...............................28 3.2.1Introduction .......................................28 3.2.2Workbench parameters ...............................28 3.2.3Heat equation ......................................29 3.2.4Initial simulation domain...........................30 3.2.5Light source definition ............................31 3.2.6Time-stepping control ..............................33 3.2.7Control parameters .................................34 3.2.8Heat parameters for materials ......................34 3.3Study Cause...........................................39 3.4Simulation Results and Discussion.....................40 3.5Summary...............................................51 3.6References ...........................................56 Chapter 4 Band-gap Density of States for a-Si:H and Photon Response.................................................57 4.1Dangling Bonds........................................57 4.2Band Models...........................................59 4.2.1The Cohen-Fritzsche-Ovshinsky Model.................61 4.2.2The Davis-Mott Model ...............................61 4.3Density of States and Electronic Transport............64 4.3.1Density of States...................................64 4.4The Setting of Traps in TCAD..........................67 4.4.1Trap Energy and Space Distributions.................67 4.4.2Trap occupation dynamics ...........................68 4.4.3Steady state analysis ..............................68 4.4.4Transient analysis .................................69 4.4.5Syntax for traps in TCAD ...........................70 4.5a-Si:H TFTs with High Mechanical Reliability for Flexible Display and a-Si:H Moding Setup.................73 4.5.1TFT Stability ......................................75 4.6The Wavelength responsively of p/i/n Poly-Si Lateral Photodiode...............................................78 4.6.1Introduction .......................................78 4.6.2Devices Fabrication ................................78 4.6.3Results & Discussion ...............................80 4.6.4Summary ............................................81 4.7References ...........................................84 Chapter 5 Summary and Future work.......................86 5.1Summary...............................................86 5.2Future Work...........................................86

    [1.1] Front End Processes, The International Technology Roadmap for Semiconductors, 2007 EDITION, page 2.
    [1.2] Front End Processes, The International Technology Roadmap for Semiconductors, 2007 EDITION, page 21.
    [1.3] Design, The International Technology Roadmap for Semiconductors, 2007 EDITION, page 8.
    [1.4] J. P. Hebb, and Klavs F. Jensen, “The Effect of Patterns on Thermal Stress During Rapid Thermal Processing of Silicon Wafers,” IEEE Trans. Semiconduct. Manufact., vol.11, pp. 99-107, 1998.
    [1.5] J. Niess, R. Berger, P. J. Timans, and Z. Nenyei, “Pattern Effects and and how to explore them” IEEE 10th ICATP– RTP, pp. 49-57, 2002.
    [1.6] C.-H. Chen, C. F. Nieh, D. W. Lin, K. C. Ku, J. C. Sheu, M. H. Yu, L. T. Wang, H. H. Lin, H. Chang, T. L. Lee, K. Goto, Carlos H. Diaz, S. C. Chen, and M. S. Liang, “Channel Stress Modulation and Pattern Loading Effect Minimization of Milli-Second Super Anneal for Sub-65nm High Performance SiGe CMOS,” VLSI Symp., 2006.
    [2.1] F. P. Incropera, and D. P. DeWitt, “Heat and Mass Transfer,” Murray Hill, New Jersey, pp. 3-11, 2002.
    [2.2] M. H. Lee, “Simulation and Design of Rapid Thermal Process,” NTNU, master thesis, 1998.
    [2.3] F. Roozeboom (ed.) “Advances in Rapid Thermal and Integrated Processing,” 1996.
    [2.4] W. P. Dumke, “Two-Phonon Indirect Transitions and Lattice Scattering in Si,” Phys. Rev. 118, 938 (1960).
    [2.5] F. J. Morin, and J. P. Maita, “Electrical Properties of Silicon Containing Arsenic and Boron,” Phys. Rev. 96, 28 (1954)
    [2.6] D. L. Stierwalt, and R. F. Potter, “Lattice Absorption Bands Observed in Silicon by means of Spectral Emissivity Measurements,” J. Phys. Chem. Solids 23, 99 (1962)
    [2.7] T. Sato, “Spectral Emissivity of Silicon,” Jpn. J. Appl. Phys. 6, 339 (1967).
    [2.8] M. C. Ozturk, “Low-pressure chemical vapor deposition of polycrystalline silicon and silicon dioxide by rapid thermal processing,” Technical Report, North Carolina State University, Raleigh, May 1989.
    [2.9] J. Nulman, J. P. Krusins, and A. Gat, “Rapid thermal processing of thin gate dielectrics: Oxidation of silicon,” IEEE Electron Device Letter, vol. EDL-6, no. 5, pp. 205-207, May 1985.
    [2.10] J. C. Gelpey, P. O. Stump, and J. W. Smith, “Process contrl for a rapid optical annealing system,” Mat. Res. Soc. Symp. Proc. 52, 199 (1986)
    [2.11] J. Nulman, “In-situ Processing of silicon dielectrics by rapid thermal processing: Cleaning, growth, and annealing,” Mat. Res. Soc. Symp. Proc. 92, 141 (1987)
    [2.12] M. L. Green, “Rapid Thermal oxidation of Silicon in N2O between 800 and 1000C: Incorporated Nitrogen and Interfacial Roughness,” Appl. Phys. Lett. 65(7), pp.848-852, 1994.
    [2.13] K. T. Nishinohara, “Improvement of Performance Deviation and Productivity of MOSFETs With Gate Length Below 30 nm by Flash Lamp Annealing,” IEEE Transactions on semiconductor manufacturing, vol. 17, No. 3, August 2004.
    [3.1] Sentaurus TCAD Tools : Workbench – User’s manual, page 4, Version Y-2006.06, June 2006.
    [3.2] Sentaurus TCAD Tools : Process – User’s manual, page 1, Version Y-2006.06, June 2006.
    [3.3] Sentaurus TCAD Tools : Structure Editor – User’s manual, page 1, Version Y-2006.06, June 2006.
    [3.4] Sentaurus TCAD Tools : Device – User’s manual, page 1, Version Y-2006.06, June 2006.
    [3.5] Sentaurus TCAD, “Simulation of Laser Annealing with Sentaurus Process” TCAD Sentaurus Version Z-2007.03.
    [3.6] Sentaurus TCAD Tools : Process – User’s manual, page 137~141, Version Y-2006.06, June 2006.
    [3.7] B. Yang, et al., VLSI Symp., 2007.
    [3.8] P. Grudowski, et al., VLSI Symp., 2006.
    [3.9] C.-H. Chen, et al., VLSI Symp., 2006.
    [3.10] T. Ito, et al., IEEE Trans. on Electron Devices, Vol. 16, pp. 413-422, 2003.
    [3.11] J. Niess, et al., IEEE 10th ICATP– RTP, pp. 49-57, 2002.
    [3.12] T. Yamamoto, et al., IEDM Tech. Dig., 2004.
    [3.13] G. H. Buh, et al., IEDM Tech. Dig., 2006.
    [3.14] T. Noda, et al., IEDM Tech. Dig., 2007.
    [4.1] R. A. Street, et al., Phys. Rev. Lett. 35, 1293 (1975)
    [4.2] M. Kastner, et al., Phys. Rev. Lett. 37, 1504 (1976)
    [4.3] P. W. Anderson, et al., Phys. Rev. 109, 1492 (1958)
    [4.4] N. F. Mott, et al., Philos. Mag. 22, 7 (1970)
    [4.5] M. H. Cohen, et al., Phys. Rev. Lett. 22, 1065 (1969)
    [4.6] W. E. Spear, et al., Philo. Mag. B 38, 303
    [4.7] E. A. Davis, et al., Philos. Mag. 22, 903 (1970)
    [4.8] W. E. Spear, et al., J. Non-Cryst. Soilds, 8-10, 727-738 (1972).
    [4.9] M. J. Powell, et al., Phil. Mag. B, 43 (1), 93 (1981)
    [4.10] C.-Y. Huang, et al., Phys. Rev. B, 27 (12), 7460 (1983).
    [4.11] J. D. Cohen, et al., Phys. Rev. Lett.,45 (3), 197 (1980).
    [4.12] M. Hirose, et al., Appl. Phys. Lett., 34(3), 234 (1979).
    [4.13] P. Viktorovitch, et al., J. Appl. Phys., 51 (9),4847 (1980).
    [4.14] M. Shur, et al., J. Appl. Phys., 55 (10), 3831 (1984).
    [4.15] S. Kishida, et al., Jpn. J. Appl. Phys., 22 (3), 511 (1983).
    [4.16] J. G. Shaw, et al., J. Appl. Phys., 64 (9), 4562 (1988).
    [4.17] M. S. Shur, et al., J. of the SID, 3-4, 223 (1995).
    [4.18] R. A. Street, “Hydrogenated Amorphous Silicon”, Cambridge University Press, 1991.
    [4.19] ISE TCAD Tools : DESSIS – ISE User’s manual, page 15.225, ISE 10, (2004)
    [4.20] ISE TCAD Tools : DESSIS – ISE User’s manual, page 15.226, ISE 10, (2004)
    [4.21] ISE TCAD Tools : DESSIS – ISE User’s manual, page 15.228, ISE 10, (2004)
    [4.22] ISE TCAD Tools : DESSIS – ISE User’s manual, page 15.231, ISE 10, (2004)
    [4.23] K. Long, et al., IEEE EDL, pp. 111-113, 2006.
    [4.24] M.-C. Lee, et al., IEDM Tech. Dig., pp. 215-218, 2003.
    [4.25] M. H. Lee, et al., IEDM Tech. Dig., pp. 69-72, 2003.
    [4.26] H. Gleskova, et al., JAP, vol. 92, pp. 6224-6229, 2002.
    [4.27] H. Gleskova, et al., APL, vol. 75, pp. 3011-3013, 1999.
    [4.28] G. P. Crawford, “Flexible Flat Panel Display,” John Wiley & Sons, England, 2005.
    [4.29] C.-C. Cheng, et al., AM-FPD, pp. 7-10, 2006.
    [4.30] C. Xu, C. Shen, et al., IEEE T-ED, vol. 52, no. 6, JUNE 2005.
    [4.31] F. Simon, et al., Applied Surface Science, vol. 252, pp. 4402-4405, 2006.
    [4.32] S. M. SZE, “SEMICONDUCTOR DEVICES Physics and Technology,” Murray Hill, New Jersey, pp. 255-257, 1985.

    無法下載圖示 本全文未授權公開
    QR CODE