簡易檢索 / 詳目顯示

研究生: 李茂廷
Lee, Mao-Ting
論文名稱: 以多目標演化演算法結合資源分配機制求解動態電力調度之成本與污染最佳化問題
Dynamic economic emission dispatch using multiobjective evolutionary algorithm with improved resource allocation mechanism
指導教授: 蔣宗哲
Chiang, Tsung-Che
口試委員: 蔣宗哲
Chiang, Tsung-Che
廖容佐
Liaw, Rung-Tzuo
鄒慶士
Tsou, Ching-Shih
口試日期: 2025/01/03
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 71
中文關鍵詞: 電力調度動態電力調度演化演算法多目標限制處理
英文關鍵詞: Economic Dispatch, Dynamic Economic Emission Dispatch, Evolutionary Algorithm, Multi-objective Optimization, Constraint Handling
DOI URL: http://doi.org/10.6345/NTNU202500372
論文種類: 學術論文
相關次數: 點閱:36下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在當前能源需求快速增長的背景下,動態電力調度之成本與污染最佳化問題成為電力系統最佳化的重要挑戰。該問題涉及在多時段內,滿足用電需求的同時,最小化燃料成本與污染物排放,並考量各種系統限制(如發電機輸出範圍、負載平衡及電力升降限制)。由於動態電力調度之成本與污染最佳化問題的多目標性、高維度與非線性特性,傳統方法難以有效解決該問題。
    本研究提出一種動態資源分配機制的多目標演化演算法,用以求解動態電力調度之成本與污染最佳化問題。該方法改進了傳統演算法在資源分配效率與解的多樣性上的不足,透過外部解集合引導搜尋方向,並運用比例動態調整決策機制處理不可行解。實驗中,透過多組公開測試數據進行比較,結果顯示本論文之方法和二十六個既有方法相比,展現優秀的求解能力。

    With the rapid increase in power demand, solving the dynamic economic emission dispatch (DEED) problem has become a crucial challenge in power system optimization. The DEED problem aims to minimize fuel costs and pollutant emissions while satisfying power demand over multiple time periods, considering various system constraints such as generator output limits, load balance, and ramp rate constraints. Due to the multiple objectives, high dimensionality, and nonlinearity of the DEED problem, traditional methods struggle to solve it effectively.
    This study develops an algorithm based on the external archive-guided multi-objective evolutionary algorithm based on decomposition (EAG-MOEA/D). EAG-MOEA/D decomposes a multi-objective problem into subproblems using an aggregation function, stores non-dominated solutions in an external archive, and allocates computing resources to subproblems based on their contribution to the archive. In this thesis, we propose three key improvements: first, we increase the update frequency of environmental selection to allow high-quality solutions to exert greater influence on the evolutionary process; second, we enhance the resource allocation mechanism by incorporating diversity contribution; and third, we hybridize the weighted sum and Tchebycheff functions to balance convergence and diversity. Experimental results on multiple publicly available benchmark datasets demonstrate that the proposed method outperforms twenty-six existing algorithms, exhibiting superior problem-solving capabilities.

    致謝 i 摘要 ii Abstract iii 目錄 iv 附表目錄 vi 附圖目錄 viii 第一章 緒論 1 1.1 研究背景 1 1.2 問題定義2 1.2.1 目標函式 2 1.2.2 問題限制 4 1.2.3 限制型多目標最佳化問題 5 1.2.4 柏拉圖凌越關係 6 1.2.5 演化演算法 8 1.3 論文架構與貢獻 9 第二章 文獻探討 10 2.1 多目標演化演算法:環境選擇機制 10 2.2 多目標演化演算法:繁殖 13 2.3 多目標演化演算法:進階設計 14 2.4 問題限制的處理方法 15 2.4.1 懲罰值函式 15 2.4.2 目標及限制分離 16 2.4.3 修復機制 17 第三章 EAGAMES-MOEA/D 演算法 19 3.1 基底演算法:EAG-MOEA/D 19 3.2 演化演算法架構 21 3.3 編碼及族群初始化 24 3.4 個體修復法 25 3.5 鄰域關係與親代選擇 26 3.6 評估方法與自適應環境選擇 27 3.7 外部解集合及動態資源分配 31 3.8 交配與突變 33 第四章 實驗結果與分析 34 4.1 測試問題集及實驗環境 34 4.2 效能指標 34 4.3 演算法參數設定 36 4.4 整體效能比較 37 4.4.1 測試資料 5-unit case 41 4.4.2 測試資料 6-unit case 44 4.4.3 測試資料 10-unit case 45 4.4.4 測試資料 15-unit case 52 4.4.5 測試資料 30-unit case 53 4.4.6 測試資料 40-unit case 55 4.5 改良機制對比與效能分析 56 4.5.1 子代生成與評估策略:即時更新與批次更新 57 4.5.2 自適應環境選擇機制 58 4.5.3 動態資源分配機制之探討 60 4.6 參數最佳化實驗 61 第五章 結論與未來方向 63 參考文獻 64 附錄 71

    Walters D C, Sheble G B. Genetic Algorithm Solution of Economic Dispatch with Valve Point Loading. IEEE Transactions on Power Systems 1993;8(3):1325–32.
    Perez-Guerrero R E, Cedeño-Maldonado J R. Differential Evolution Based Economic Environmental Power Dispatch. Proceedings of the 37th Annual North American Power Symposium 2005:191–97.
    Grady W M, Noyola A H, Viviani G L. An Optimized Procedure for Determining Incremental Heat Rate Characteristics. IEEE Transactions on Power Systems 1990;5(2):376–83.
    Ross D W, Kim S. Dynamic Economic Dispatch of Generation. IEEE Transactions on Power Apparatus and Systems 1980; PAS-99(6):2060–68.
    Shen X, Zou D, Duan N, Zhang Q. An Efficient Fitness-Based Differential Evolution Algorithm and a Constraint Handling Technique for Dynamic Economic Emission Dispatch. Energy 2019;186:115801. [EFDE]
    Fan Z, Li W, Cai X, Li H, Wei C, Zhang Q, Deb K, Goodman E. Push and Pull Search for Solving Constrained Multi-Objective Optimization Problems. Swarm and Evolutionary Computation 2019;44:665–79.
    Deb K, Pratap A, Agarwal S, Meyarivan T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 2002;6(2):182–97. [NSGA-II_orig]
    Basu M. Dynamic Economic Emission Dispatch Using Nondominated Sorting Genetic Algorithm-II. Electrical Power and Energy Systems 2008;30(2):140–49. [NSGA-II]
    Jiang X, Zhou J, Wang H, Zhang Y. Dynamic Environmental Economic Dispatch Using Multiobjective Differential Evolution Algorithm with Expanded Double Selection and Adaptive Random Restart. Electrical Power and Energy Systems 2013;49:399–407. [MAMODE]
    Zhang H, Yue D, Xie X, Hu S, Weng S. Multi-elite guide hybrid differential evolution with simulated annealing technique for dynamic economic emission dispatch. Applied Soft Computing 2015;34:312–23 [MOHDE-SAT]
    Zhu Z, Wang J, Baloch M H. Dynamic Economic Emission Dispatch Using Modified NSGA-II. International Transactions on Electrical Energy Systems 2016;26:2684–98. [MNSGA-II]
    Zhang Q, Li H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Transactions on Evolutionary Computation 2007;11(6):712–31. [MOEA/D]
    Zhu Y, Qiao B, Dong Y, Qu B, Wu D. Multiobjective Dynamic Economic Emission Dispatch Using Evolutionary Algorithm Based on Decomposition. IEEJ Transactions on Electrical and Electronic Engineering 2019;14:1323–33. [IMOEA/D-CH]
    Ko H J, Visutarrom T, Chiang T C. Dynamic Economic Emission Dispatch Through Evolutionary Multiobjective Optimization: An Experimental Study. IEEE Symposium Series on Computational Intelligence 2022:750–59. [MOEA/D-DRAM]
    Deb K, Jain H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Transactions on Evolutionary Computation 2014;18(4): 577–601. [NSGA-III]
    Wu P, Zou D, Yu N, Zhang G, Kong L. An Improved NSGA-III for the Dynamic Economic Emission Dispatch Considering Reliability. Energy Reports 2022;8:14304–17. [I-NSGA-III]
    Qiao B, Liu J, Hao X. A Multi-Objective Differential Evolution Algorithm and a Constraint Handling Mechanism Based on Variables Proportion for Dynamic Economic Emission Dispatch Problems. Applied Soft Computing 2021;108:107419. [NSDESa_LS]
    Qian S, Wu H, Xu G. An Improved Particle Swarm Optimization with Clone Selection Principle for Dynamic Economic Emission Dispatch. Soft Computing 2020;24:15249–71. [PSOCS]
    Mason K, Duggan J, Howley E. Multi-objective Dynamic Economic Emission Dispatch Using Particle Swarm Optimisation Variants. Neurocomputing 2017;270:188–97. [PSOAWL]
    Elaiw A M, Xia X, Shehata A M. Hybrid DE-SQP and Hybrid PSO-SQP Methods for Solving Dynamic Economic Emission Dispatch Problem with Valve-Point Effects. Electric Power Systems Research 2013;103:192–200. [DE-SQP]
    Niknam T, Golestaneh F, Sadeghi M S. θ-Multiobjective Teaching–Learning-Based Optimization for Dynamic Economic Emission Dispatch. IEEE Systems Journal 2012;6(2):341–52. [θ-MTLBO]
    Cai X, Li Y, Fan Z, Zhang Q. An External Archive Guided Multiobjective Evolutionary Algorithm Based on Decomposition for Combinatorial Optimization. IEEE Transactions on Evolutionary Computation 2015;19(4):508–23. [EAG-MOEA/D]
    Pandita N, Tripathi A, Tapaswi S, Pandit M. An Improved Bacterial Foraging Algorithm for Combined Static/Dynamic Environmental Economic Dispatch. Applied Soft Computing 2012;12:3500–13. [IBFA]
    Homaifar A, Qi C X, Lai S H. Constrained Optimization Via Genetic Algorithms. Simulation 1994;62(4):242–53.
    Joines J A, Houck C R. On the Use of Non-Stationary Penalty Functions to Solve Nonlinear Constrained Optimization Problems with GA’s. Proceedings of the IEEE World Congress on Computational Intelligence 1994;1:579–84.
    Bean J C, and Ben Hadj-Alouane, A. A dual genetic algorithm for bounded integer programs. Technical Report 1993:1–18.
    Bäck T, Schwefel H P. A Survey of Evolution Strategies. Proceedings of the Fourth International Conference on Genetic Algorithms 1991:2–9.
    Takahama T, Sakai S. Constrained optimization by constrained particle swarm optimizer with ε-level control. Soft Computing as Transdisciplinary Science and Technology 2005:1019–29.
    Runarsson T P, Yao X. Stochastic Ranking for Constrained Evolutionary Optimization. IEEE Transactions on Evolutionary Computation 2000;4(3):284–94.
    Ming M, Wang R, Zha Y, Zhang T. Pareto Adaptive Penalty-Based Boundary Intersection Method for Multi-Objective Optimization. Information Sciences 2017;414:158–74.
    Zhang Q, Liu W, Li H. The Performance of a New Version of MOEA/D on CEC09 Unconstrained MOP Test Instances. IEEE Congress on Evolutionary Computation 2009:203–08. [MOEA/D-DRA]
    Deb K and Goyal M. A combined genetic adaptive search (GeneAS) for engineering design. Journal of Computer Science and Informatics 1966;26:30–45.
    Basu M. Particle swarm optimization-based goal-attainment method for dynamic economic dispatch problem. Electric Power Components and Systems 2006;34:1015–25. [PSO]
    Guo C X, Zhan J P, Wu Q H. Dynamic Economic Emission Dispatch Based on Group Search Optimizer with Multiple Producers. Electric Power Systems Research 2012;86:8–16. [GSOMP]
    Mason K, Duggan J, Howley E. A Multi-Objective Neural Network Trained with Differential Evolution for Dynamic Economic Emission Dispatch. Electrical Power and Energy Systems 2018;100:201–21. [MONNDE]
    Roy P K, Bhui S. A Multi-Objective Hybrid Evolutionary Algorithm for Dynamic Economic Emission Load Dispatch. International Transactions on Electrical Energy Systems 2016;26:49–78. [HCRO]
    Zitzler E, Deb K, Thiele L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 2000;8(2):173–195. [ZDT]
    Deb K, Thiele L, Laumanns M, Zitzler E. Scalable Test Problems for Evolutionary Multiobjective Optimization. Evolutionary Multiobjective Optimization: Theoretical Advances and Applications 2005:105–145. [DTLZ]
    Li Z, Zou D, Kong Z. A Harmony Search Variant and a Useful Constraint Handling Method for the Dynamic Economic Emission Dispatch Problems Considering Transmission Loss. Engineering Applications of Artificial Intelligence 2019;84:18–40. [NEHS]
    Liu G, Zhu Y, Jiang W. Dynamic Economic Emission Dispatch with Wind Power Based on Improved Multi-Objective Brain Storm Optimisation Algorithm. IET Renewable Power Generation 2020;14(13):2526–37. [IMOBSO]
    Yang L, He D, Li B. A Selection Hyper-Heuristic Algorithm for Multiobjective Dynamic Economic and Environmental Load Dispatch. Complexity 2020;2020(1):4939268. [SHHA]
    Li L L, Liu Z F, Tseng M L, Zheng S J, Lim M K. Improved Tunicate Swarm Algorithm: Solving the Dynamic Economic Emission Dispatch Problems. Applied Soft Computing 2021;108:107504. [ITSA]
    Bai Y, Wu X, Xia A. An Enhanced Multi-Objective Differential Evolution Algorithm for Dynamic Environmental Economic Dispatch of Power System with Wind Power. Energy Science & Engineering 2020;9(3):316–29. [EMODE]
    Zou Y, Zhao J, Ding D, Miao F, Sobhani B. Solving Dynamic Economic and Emission Dispatch in Power System Integrated Electric Vehicle and Wind Turbine Using Multi-Objective Virus Colony Search Algorithm. Sustainable Cities and Society 2021;67:102722. [MOVCS]
    Wang J, Qian Y. A New Multi-Objective Hybrid Algorithm for Dynamic Environmental Economic Dispatching of Power System. IEEE Power System and Green Energy Conference. IEEE; 2022. p. 800–5. [IMOSSA-DE]
    Hassan M H, Kamel S, Domínguez-García J L, El-Naggar M F. MSSA-DEED: A Multi-Objective Salp Swarm Algorithm for Solving Dynamic Economic Emission Dispatch Problems. Sustainability 2022;14(15):9785. [MSSA]
    Mughal R C Z, Nawaz U, Ahmed S, Mumtaz S, Waseem M, Saleh A M. A Novel FFA-GWO-Based Optimization Paradigm for Solving a Dynamic Economic Emission Dispatch in Power Plants. IET Renewable Power Generation 2023;17(13):3163–78. [FFA-GWO]
    Zhong K, Xiao F, Gao X. An Efficient Multi-Objective Approach Based on Golden Jackal Search for Dynamic Economic Emission Dispatch. Journal of Bionic Engineering 2024;21:1541–66.[MOGJO]

    下載圖示
    QR CODE