簡易檢索 / 詳目顯示

研究生: 林至寬
Lin, Chih-Kuan
論文名稱: 導電奈米纖維複合碳黑/石墨烯應用於鋁離子電池之研製
Development of aluminum-ion batteries using conductive nanofibers compounded with carbon black/graphene
指導教授: 楊啓榮
Yang, Chii-Rong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 99
中文關鍵詞: 鋁離子電池靜電紡絲技術碳-微機電石墨烯
英文關鍵詞: Aluminum-ion batteries, Electrospinning, C-MEMS, Graphene
DOI URL: http://doi.org/10.6345/NTNU201900956
論文種類: 學術論文
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 可充電式之多價金屬離子電池由於具有高理論比電容值和較低之成本而受到廣泛的關注,其中,鋁具有存量豐富,安全性高,對環境友善和利用三電子進行氧化還原反應之高體積容量等優勢,被認為是下一代可充電電池的有力候選人。
    本論文以SU-8 2050厚膜光阻為材料,使用黃光微影技術於尺寸2×2 cm2之鉬箔上製作SU-8圓柱陣列結構,並以靜電紡絲技術製備SU-8紡絲奈米纖維。接著透過靜電紡絲技術製備SU-8紡絲奈米纖維。再以兩段式升溫之高溫碳化製程將SU-8光阻轉變為類玻璃碳材料(Glassy carbon),完成直徑32 µm、深寬比5、間距80 µm之導電碳圓柱陣列結構以及線徑910 nm之碳奈米纖維(Carbon nanofiber)之製備。後續將碳奈米纖維以均質機破碎後,與石墨烯(Graphene)和碳黑(Carbon black)藉由NMP@PVDF黏著劑複合形成鋁離子電池陰極之電極漿料,並滴塗於導電圓柱陣列電極中,完成全碳之鋁離子電池陰極之製作。本論文選擇8組不同漿料用於製備鋁離子電池的陰極,包括未添加碳奈米纖維的漿料,以石墨烯:碳黑=1:0、1:1、1:5、1:8之比例製備四組電極,並於相同之石墨烯與碳黑比例下額外添加碳奈米纖維,再製備出石墨烯:碳黑:碳奈米纖維=1:0:0.5、1:1:0.5、1:5:0.5、1:8:0.5等四組電極。將電極均組裝成鋁離子電池元件後,透過恆電位儀進行循環伏安曲線(Cyclic voltammetry curve, C-V curve)測試以及恆電流充放電(Galvanostatic charge/discharge, GCD)之測試,評估電池之性能。量測結果發現,添加碳奈米纖維之四組電極的C-V 曲線面積,分別比未添加纖維之四組提升了660%、57%、-17%、314%。除石墨烯:碳黑:碳奈米纖維=1:5:0.5電極之C-V曲線面積有小幅度下降外,其餘電極之C-V 曲線面積均有大幅度提升,說明添加碳奈米纖維能夠提供更多比表面積供鋁離子嵌入與嵌出,進而提升電池效能。將上述8組電極所組裝而成之鋁離子電池中,選取性能較好之石墨稀:碳黑=1:1、1:5與石墨烯:碳黑:碳奈米纖維=1:0:0.5、1:1:0.5、1:5:0.5、1:8:0.5六組電極,以100 mA/g之電流密度進行恆電流充放電測試,並計算其比電容值,分別得到3.5、2.5、8.25、14、5、4 mAh/g的結果。其中,石墨烯:碳黑:碳奈米纖維=1:1:0.5之電極具有最高的充電比電容值12 mAh/g,以及放電比電容值14 mAh/g,並且具有85.7%之庫倫效率。此外,石墨烯:碳黑:碳奈米纖維=1:1:0.5與1:5:0.5兩組電極之比電容值,分別達到未添加碳奈米纖維電極的4倍與2倍。

    Rechargeable multivalent ion batteries rechargeable multivalent ion batteries have attracted intensive attention due to their high theoretical capacities and low cost. Among them, aluminum is considered as a promising electrode candidate for rechargeable batteries because of its low cost, safety, environmental friendliness, and high volumetric capacity based on three-electron redox reaction of Al ions.
    This study used 2×2 cm2 Mo foil as substrate, and used the lithography process to prepared an cylindrical microstructure array by SU-8 2050 thick-film photoresist. Nano spinning fiber was prepared by electrospinning technique using a SU-8 concentration ratio of SU-8 : thinner=5:1 as a spinning solution. Then the cylindrical microstructure array and the nano spinning fiber were transformed into glassy carbon material by a two-stage high temperature carbonization process. The aspect ratio of conductive carbon cylinder array was more than 5(diameter 32 µm, height 170 µm) and the diameter of carbon nanofibers(CF) were 910 nm. Carbon nanofibers were crushed uniformly by clarifixator to prepare a slurry which compound with graphene(GN) and carbon black(CB). The carbon nanofibers were compounded with graphene and carbon black by an NMP@PVDF adhesive to form electrode slurry of the cathode of the aluminum-ion battery, and were drop coating to the conductive cylindrical array electrode to finish the cathode of the all-carbon aluminum ion battery. In this research, 8 different slurries were selected for the preparation of cathodes for aluminum ion batteries, including graphene: carbon black = 1:0, 1:1, 1:5, 1:8 and graphene: carbon black: carbon nanofibers =1:0:0.5, 1:1:0.5, 1:5:0.5, 1:8:0.5. After assembling the electrodes into aluminum-ion batteries, cyclic voltammetry curve (C-V curve) test and galvanostatic charge/discharge (GCD) test were used to evaluate the performance of batteries by potentiostat. The measurement results showed that the C-V curve area of the four groups with carbon nanofibers increased by 660%, 57%, -17%, and 314%, respectively. This result improved that adding of carbon nanofibers provided more space for intercalation and deintercalation of Al-ions. 6 samples of electrode formulations with better performance: graphene:carbon black=1:1, 1:5 and graphene:carbon black:carbon nanofibers=1:0:0.5, 1:1:0.5, 1:5:0.5, 1:8:0.5 assembled into aluminum ion batteries and galvanostatic charge/discharge test was performed at a current density of 100 mA/g. The specific capacitance values of the six batteries were 3.5, 2.5, 8.25, 14, 5, 4 mAh/g, respectively. Among them, the electrode formulation with graphene:carbon black:carbon nanofibers=1:1:0.5 has the highest charge and discharge specific capacitance value, 12 mAh/g and 14 mAh/g. Its coulombic efficiency was 85.7%. In addition, the specific capacitance of the two groups of graphene:carbon black:carbon nanofibers=1:1:0.5 and 1:5:0.5 were 4 times and 2 times higher than the electrode without carbon nanofibers.

    摘要 I 總目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1前言 1 1.2 SU-8厚膜光阻簡介 2 1.3 C-MEMS製程簡介 6 1.4靜電紡絲技術簡介 9 1.5碳黑簡介 12 1.6鋁離子電池簡介與應用 14 1.7研究動機與目的 17 1.8論文架構 19 第二章 文獻回顧 20 2.1 C-MEMS製程與電極製備之應用 20 2.2靜電紡絲技術 25 2.2.1靜電紡絲基本原理 26 2.2.2影響靜電紡絲纖維成形之因素 28 2.3鋁離子電池 35 2.3.1鋁離子電池之電解液種類及影響 36 2.3.2鋁離子電池之電極材料種類 38 2.3.3鋁離子電池電化學性能評估 39 2.4碳黑 41 2.4.1碳黑於鋁離子電池之應用 42 2.5石墨烯 44 2.5.1石墨烯在鋁離子電池的應用 46 第三章 實驗設計與規劃 51 3.1實驗設計 51 3.2實驗規劃 59 3.3實驗與檢測設備 66 第四章 實驗結果與討論 72 4.1導電碳圓柱結構之製備 72 4.1.1基板選擇 72 4.1.2 SU-8圓柱結構之製備 74 4.1.3 SU-8圓柱結構之高溫碳化 78 4.2碳奈米纖維之製備 79 4.2.1 SU-8紡絲奈米纖維之製備 79 4.2.2 SU-8紡絲奈米纖維之高溫碳化 81 4.3全碳三維陰極之製備 82 4.3.1不同碳黑比例對於電極之影響 83 4.3.2 碳奈米纖維對於電極之影響 84 4.1.3 SU-8圓柱結構之高溫碳化 78 4.4鋁離子電池之元件組裝 85 4.5鋁離子電池之電化學性能量測 87 第五章 結論與未來展望 91 5.1結論 91 5.2未來展望 92 參考文獻 94

    1. https://doi.org/10.1002/anie.201814031
    2. H. Lorenz et al, “Fabrication of photoplastic high-aspect ratio micro parts and micromoldsusing SU-8 UV resist”, Microsystem Technologies, vol. 4, pp. 143-146(1998).
    3. http://www.microchem.com/
    4. 楊啓榮等人, 「SU-8 厚膜光阻於微系統UV-LIGA製成的應用」, 科儀新知, vol. 21(5), pp. 46-53(1998)
    5. C. G. Willson et al., “Chemical amplification in the design of polymers for resist application”, Pure and applied chemistry, pp. 207-219(1982).
    6. D. W. Johnson, “MCC Technical Report”, Advance Package Seminar (1998).
    7. M. Shaw et al., “Improving the process capability of SU-8”, Microsystem Technologies, vol.10, pp. 01-06 (2003).
    8. P. J. F. Harris, “Fullerene-related structure of commercial glassy carbon”, Philosophical Magazine, vol. 84, pp. 3159-3167 (2004).
    9. O. S. Odutemowo et al., “Structural and surface changes in glassy carbon due to strontium implantation and heat treatment”, Journal of Nuclear Materials, vol. 498, pp. 103-116 (2018).
    10. http://www.tondig.com/it/projects/.
    11. http://www.htw-germany.com/products.php5?lang=en&nav0=3&nav1=1.
    12. http://www.microchem.com/Appl-MEMs-CHEMS.htm.
    13. J. I. Heo et al, “Carbon interdigitated array nanoelectrodes for electrochemical applications”, Journal of the Electrochemical Society, vol. 158(3), pp.76-80 (2011).
    14. C. L. Li et al., “Electrochemistry and Morphology Evolution of Carbon Micro-net Films for Rechargeable Lithium Ion Batteries”, The Journal of Physical Chemistry C, vol. 112(35), pp. 13782- 13788 (2008).
    15. W. Chen et al., “Integration of carbon nanotubes to C-MEMs for on-chip supercapacitors”, IEEE Transactions on Nanotechnology, vol. 9(6), pp. 734-740 (2011).
    16. H. Xu. et al., ”Carbon post-microarrays for glucose sensors”, Biosensors and Bioelectronics, vol. 23(11), pp. 1637-1644 (2008).
    17. D. Li. et al., “Electrospinning of Nanofibers:Reinventing the Wheel?” Advanced Materials, vol. 16(14), pp. 1150-1171 (2004).
    18. Hadad S et al., “Fabrication and characterization of electrospun nanofibers using flaxseed (Linum usitatissimum) mucilage”, International Journal of Biological Macromolecules, vol. 114, pp. 408-414 (2018).
    19. J. Doshi, “Electrospinning process and applications of electrospun fibers”, Journal of Electrostatics, vol. 35, pp. 151-160 (1995).
    20. P. F. Jao et al., “Fabrication of an all SU-8 electrospun nanofiber based supercapacitor”, Journal of Micromechanics and Microengineering, vol. 23, pp. 11411-11418 (2013).
    21. C. S. Sharma et al., “Multiscale carbon structures fabricated by direct micropatterning of electrospun mats of SU-8 photoresist nanofibers”, Langmuir, vol. 26(4), pp. 2218-2222 (2010).
    22. C.M. Long et al., “Carbon black vs. black carbon and other airborne materials containing elemental carbon: physical and chemical distinctions”, Environmental Pollution, vol. 181, pp. 271-286 (2013).
    23. Z. Jiang et al., “Effect of surface modification of carbon black (CB) on the morphology and crystallization of poly(ethylene terephthalate)/CB masterbatch”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 395, pp.105-115 (2012).
    24. F. Calegari et al., “Construction and evaluation of carbon black and poly(ethylene co-vinyl)acetate (EVA) composite electrodes for development of electrochemical (bio)sensors”, Sensors and Actuators B: Chemical, vol. 253, pp. 10-18 (2017).
    25. F. Wang et al., “Aqueous Rechargeable Zinc/Aluminum Ion Battery with Good Cycling Performance”, Applied Materials & Interfaces, vol. 8(14), pp. 9022-9029 (2016).
    26. N. Jayaprakash et al, “The rechargeable aluminum-ion battery”, Chemical Communications, vol. 47(2008).
    27. M. C. Lin et al., “An ultrafast rechargeable aluminum-ion battery”, Nature, vol. 520, pp. 324-328 (2015).
    28. 楊玨、左峻德,「電網儲能技術發展與應用現況」,臺灣經濟研究月刊,vol. 37(9), pp.74-84(2014).
    29. H. S. Min et al., “Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery”, Journal of Power Sources, vol. 178, pp. 795-800 (2008).
    30. S. Jiang et al., “Fabrication of a 3D micro/nano dual-scale array and its demonstration as the micro electrodes for supercapacitors”, Journal of Micromechanics and Microengineering, vol. 24, pp. 45001-45009 (2014).
    31. G. G. Wallace et al., “Nanobionics: the impact of nanotechnology on implantable medical bionic devices”, Nanoscale, vol. 4, pp. 4327-4347 (2012).
    32. A. Formhals, “Artifical thread and method of producing same”, U.S. Patent, 2, 187, 306, Application(1937)
    33. A. Formhals, “Method and apparatus for spinning”, U.S. Patent, 2, 160, 962, Application(1936)
    34. A. Formhals, “Process and apparatus for preparing artificial threads”, U.S. Patent, 1, 975, 504, Application(1934)
    35. G. Taylor, “Disintegration of water drops in an electric field”, Proceedings of the royal society A: mathematical, physical and engineering sciences, vol. 280, pp. 383-397(1964).
    36. S. Blonski et al., “Electrospinning of liquid jets”, Mechanics, pp. 15-21, Warsaw, Poland (2004).
    37. A. Koski et al., “Effect of molecular weight on fibrous PVA produced by electrospinning”, vol. 58, pp. 493-497(2004).
    38. S. Megelski et al., “Micro- and nanostructured surface morphology on electrospun polymer fibers”, Macromolecules, vol. 35, pp. 8456-8466(2002).
    39. H. Fong et al., “Beaded nanofibers formed during electrospinning”, Polymer, vol. 40, pp. 4585-4592(1999).
    40. D. H. Reneker et al., “Bending instability of electrically charged liquid jets of polymer solutions in electrospinning”, Journal of applied physics, vol. 87, pp. 4531-4537(2000).
    41. K. K. Lee et al., “Mechnical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends”, Journal of polymer science: part B polymer physics, vol. 41, pp. 1256-1262(2003).
    42. J. K. Steach et al., “Optimization of electrospinning an SU-8 negative photoresist to create patterned carbon nanofibers and nanobeads”, Journal of Applied Polymer Science, vol. 118, pp. 405-412(2010).
    43. L. Wannatong et al., “Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene”, Polymer International, vol. 53, pp. 1851-1859(2004).
    44. K. H. Lee et al., “Influence of a mixing solvent with tetrahydrofuran and N, N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats”, Journal of polymer science part B: polymer physics, vol. 40, pp. 2259-2268(2002).
    45. 吳大誠、杜仲良、高緒珊,「奈米纖維」,五南書局(2004)。
    46. S. Liu et al., “Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries”, Energy & Environmental Science, vol. 5, pp. 9743-9746(2012).
    47. H. Lahan et al., “Active role of inactive current collector in aqueous aluminum-ion battery”, Ionics, vol. 24, pp. 2175-2180(2018).
    48. J. Wei et al., “An amorphous carbon-graphite composite cathode for long cycle life rechargeable aluminum ion batteries”, Journal of Materials Science & Technology, vol. 34(6), pp. 983-989(2018).
    49. M. C. Lin et al., “An ultrafast rechargeable aluminum-ion battery”, Nature, vol. 520, pp. 324-328 (2015).
    50. D. Y. Wang et al., “Advanced rechargeable aluminum ion battery with a high-quality natural graphite cathode”, Nature Communications, vol. 8, Article number: 14283(2017).
    51. H. Chen et al., “Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life”, Applied Sciences and Engineering, vol. 3(2017).
    52. H. Sun et al., “A new aluminium-ion battery with high voltage, high safety and low cost”, Chemical Communications, vol. 51, pp. 11892-11895(2015).
    53. H. Li et al., “A highly reversible Co3S4 microsphere cathode material for aluminum-ion batteries”, Nano Energy, vol. 56, pp. 100-108(2019).
    54. S. Wang et al., “High-performance aluminum-ion battery with CuS@C Microsphere Composite Cathode”, ACS Nano, vol. 11, pp. 469-477(2016).
    55. H. Lahan et al., “An approach to improve the Al3+ ion intercalation in anatase TiO2 nanoparticle for aqueous aluminum-ion battery”, Ionics, vol. 24, pp. 1855-1860(2018)
    56. J. Liu et al., “Nanosphere-rod-like Co3O4 as high performance cathode material for aluminium ion batteries”, Journal of Power Sources, vol. 422, pp. 49-56(2019).
    57. A. Rose et al., “Investigation of cyclic voltammetry of graphene oxide/polyaniline/polyvinylidene fluoride nanofibers prepared via electrospinning”, Materials Science in Semiconductor Processing, vol. 31, pp. 281-286(2015).
    58. T. A. Silva et al., “Electrochemical Biosensors Based on Nanostructured Carbon Black: A Review”, Journal of Nanomaterials, vol. 2017, Article ID 4571614.
    59. S. Mahajan, “Encyclopedia of Materials: Science and Technology” (2001).
    60. S. Wang et al., “High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode”, ACS Nano, vol. 11, pp. 469-477(2016).
    61. http://curiosoando.com/que-es-el-grafeno
    62. K. S. Novoselov et al., “Electric field effect in atomically thin carbon films”, Science, vol. 306, pp. 666-669(2004).
    63. http://nobelprize.org/nobel_prizes/physics/laureates/2010/
    64. C. Y. Su, Graphene: The applications in optical electronics and thermal management, SumKen (2013).
    65. C. Lee et al., “Measurement of the elastic properties amd intrinsic strength of monolayer graphene”, Science, vol. 321, pp. 385-388(2008).
    66. R. R. Nair et al., “Fine structure constant defines visual transparency of graphene”, Science, vol. 320, pp. 1308-1315(2008)/
    67. H. Huang et al., “Graphene aerogel derived compact films for ultrafast and high-capacity aluminum ion batteries”, Energy Storage Materials, (2019).
    68. X. Zhang et al., “Flower‐like Vanadium Suflide/Reduced Graphene Oxide Composite: An Energy Storage Material for Aluminum‐Ion Batteries”, vol. 11, pp. 709-715(2017).
    69. C. Liu et al., “Graphene-based supercapacitor with an ultrahigh energy density”, Nano letters, vol. 10, pp. 4863-4868(2010).
    70. H. Chen et al., “A Defect‐Free Principle for Advanced Graphene Cathode of Aluminum‐Ion Battery”, Advanced Materials, vol. 29, 1605958(2017).
    71. X. Huang et al., “Free-standing monolithic nanoporous graphene foam as a high performance aluminum-ion battery cathode”, Journal of Materials Chemistry A, vol. 5, 19416(2017).

    下載圖示
    QR CODE