研究生: |
陳泓儒 Chen, Hung-Ru |
---|---|
論文名稱: |
機械剝離法前後二硒化鉬掃描穿隧式顯微術之研究 A Scanning Tunneling Microscopic Study of MoSe2 before and after Mechanical Exfoliation |
指導教授: |
傅祖怡
Fu, Tsu-Yi |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 掃描穿隧式顯微鏡 、過渡金屬二硫族化物 、二硒化鉬 、機械剝離法 |
DOI URL: | http://doi.org/10.6345/NTNU202001467 |
論文種類: | 學術論文 |
相關次數: | 點閱:160 下載:15 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二硒化鉬層狀半導體屬於過渡金屬二硫族化物(TMD)材料,為二維材料中的一種。由硫族元素與ⅣB、ⅤB、ⅥB、ⅦB族過渡元素鍵結產生一層平面,層與層之間再以較弱的凡德瓦力結合形成塊材。由於此特性,TMD材料往往能由塊材分離出穩定的二維單層結構。藉由掃描穿隧式顯微鏡(STM)進行研究,量測樣品表面與其局部特性,測得的資訊能讓我們更認識二硒化鉬在表面上的行為。
本次實驗在超高真空(UHV)環境下,以STM觀察二硒化鉬在四種情況的改變,分別為在大氣下曝露長時間的表面(Non-Fresh)、剛經機械剝離法處理完的表面(Fresh)、經機械剝離法處理過,又在大氣下放置27天下的表面(After Fresh 27 Days)、經機械剝離法處理過,特定曝露在氧氣之下的表面(Exposure to oxygen)。在機械剝離法前後的缺陷密度及種類都有著顯著的差異。再次經過27天曝大氣後,缺陷密度則有轉變回機械剝離法前的趨勢,此改變有可能造成樣品在大氣下的電性變化。特定曝氧氣,其表面電性更接近機械剝離法前的狀態,推測氧氣在表面電性上的改變扮演著重要的角色。本實驗比較缺陷密度、缺陷附近的能帶排列圖(Band alignment)及大尺度下的掃描穿隧能譜(STS)後,得出缺陷於大氣作用下的變化與其變化造成材料表面能帶結構的改變。
Molybdenum diselenide layered semiconductors belong to the transition metal dichalcogenide (TMD) material, which is one of the two-dimensional materials. The bonding of chalcogen elements with IVB, ⅤB, ⅥB, and VIIB group transition elements produces a plane, and the layers are combined with a weak van der Waals forces to form a block. Because of this characteristic, TMD materials can often separate stable two-dimensional single-layer structures from blocks. Through the research of scanning tunneling microscope (STM), measuring the surface and local characteristics of the sample, the measured information can make us better understand the behavior of molybdenum diselenide on the surface.
In this experiment, under ultra-high vacuum (UHV) environment, STM was used to observe the changes of molybdenum diselenide in four situations, which were exposed to the surface for a long time under the atmosphere (Non-Fresh), just after the mechanical peeling treatment The surface (Fresh), the surface-treated by mechanical peeling, and then placed under the atmosphere for 27 days (After Fresh 27 Days), the surface-treated by mechanical peeling, the surface exposed to oxygen specifically (Exposure to oxygen). There are significant differences in defect density and types before and after mechanical stripping. After 27 days of exposure to the atmosphere again, the defect density tends to change back to that before the mechanical stripping method. This change may cause the electrical properties of the sample under the atmosphere. For specific oxygen exposure, the surface electrical properties are closer to the state before the mechanical stripping method, and it is speculated that the change in oxygen surface electrical properties plays an important role. In this experiment, after comparing the defect density, the band alignment near the defect (Band alignment) and the large-scale scanning tunneling energy spectrum (STS), it is concluded that the change of the defect under the atmosphere and its change caused the surface energy band structure of the material change.
[1] Lundstrom, Mark. "Moore's law forever?." Science 299.5604 (2003): 210-211.
[2] Novoselov, Kostya S., et al. "Electric field effect in atomically thin carbon films." science 306.5696 (2004): 666-669.
[3] Novoselov, Kostya S., et al. "Two-dimensional atomic crystals." Proceedings of the National Academy of Sciences 102.30 (2005): 10451-10453.
[4] M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials, Chem Rev, 113(2013)3766-3798.
[5] W. Feng, W. Zhenxing, W. Qisheng, W. Fengmei, Y. Lei, X. Kai, H. Yun, H. Jun, Synthesis, properties and applications of 2D non-graphene materials,anotechnology, 26(2015)292001.
[6] Kuc, Agnieszka. "Low-dimensional transition-metal dichalcogenides." (2014): 1-29.
[7] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat Nanotechnol, 7(2012)699-712.
[8] A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures, Nature, 499(2013)419-425.
[9]Kong, Desheng, et al. "Synthesis of MoS2 and MoSe2 films with vertically aligned layers." Nano letters 13.3 (2013): 1341-1347.
[10]Liu, Hongjun, et al. "Line and point defects in MoSe2 bilayer studied by scanning tunneling microscopy and spectroscopy." ACS nano 9.6 (2015): 6619-6625.
[11]Amani, Matin, et al. "Recombination kinetics and effects of superacid treatment in sulfur-and selenium-based transition metal dichalcogenides." Nano letters 16.4 (2016): 2786-2791..
[12]Li, Xufan, et al. "Suppression of defects and deep levels using isoelectronic tungsten substitution in monolayer MoSe2." Advanced Functional Materials 27.19 (2017): 1603850.
[13]Ohtake, Akihiro, and Yoshiki Sakuma. "Heteroepitaxy of MoSe2 on Si (111) substrates: Role of surface passivation." Applied Physics Letters 114.5 (2019): 053106.
[14]Truong, Quang Duc, et al. "Defect-rich exfoliated MoSe2 nanosheets by supercritical fluid process as an attractive catalyst for hydrogen evolution in water." Applied Surface Science 505 (2020): 144537.
[15] Bissessur, Rabin, et al. "Encapsulation of polymers into MoS2 and metal to insulator transition in metastable MoS2." Journal of the Chemical Society, Chemical Communications 20 (1993): 1582-1585.
[16] Ugeda, Miguel M., et al. "Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor." Nature materials 13.12 (2014): 1091-1095.
[17] Shu, Haibo, et al. "Defect engineering in MoSe2 for the hydrogen evolution reaction: from point defects to edges." ACS applied materials & interfaces 9.49 (2017): 42688-42698.
[18] Kuraganti, Vasu, et al. "Manganese doping of MoSe2 promotes active defect sites for hydrogen evolution." ACS applied materials & interfaces 11.28 (2019): 25155-25162.
[19] Kam, K. K., and B. A. Parkinson. "Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides." The Journal of Physical Chemistry 86.4 (1982): 463-467.
[20]Tongay, Sefaattin, et al. "Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2." Nano letters 12.11 (2012): 5576-5580.
[21]Yun, Won Seok, et al. "Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-M X 2 semiconductors (M= Mo, W; X= S, Se, Te)." Physical Review B 85.3 (2012): 033305.
[22]Bradley, Aaron J., et al. "Probing the role of interlayer coupling and coulomb interactions on electronic structure in few-layer MoSe2 nanostructures." Nano letters 15.4 (2015): 2594-2599.
[23] R.S.Chen, C. C.Tang, W.C. Shen, Y. S. Huang."Thickness-dependent electrical conductivities and ohmic contacts in transition metal dichalcogenides multilayers." Nanotechnology 25.41 (2014): 415706.
[24]張郁欣,二硒化鉬層狀半導體之二維電傳輸特性,(2018)
[25]Komsa, Hannu-Pekka, and Arkady V. Krasheninnikov. "Native defects in bulk and monolayer MoS 2 from first principles." Physical Review B 91.12 (2015): 125304.
[26]Addou, Rafik, Luigi Colombo, and Robert M. Wallace. "Surface defects on natural MoS2." ACS applied materials & interfaces 7.22 (2015): 11921-11929.
[27] Inoue, Akihiro, Takahiro Komori, and Ken-ichi Shudo. "Atomic-scale structures and electronic states of defects on Ar+-ion irradiated MoS2." Journal of Electron Spectroscopy and Related Phenomena 189 (2013): 11-18.
[28]Mahboob, I., et al. "Intrinsic electron accumulation at clean InN surfaces." Physical review letters 92.3 (2004): 036804.
[29]King, P. D. C., et al. "Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedral In2O3." Physical Review B 79.20 (2009): 205211.
[30]Ishida, Nobuyuki, Kazuhisa Sueoka, and Randall M. Feenstra. "Influence of surface states on tunneling spectra of n-type GaAs (110) surfaces." Physical Review B 80.7 (2009): 075320.
[31] 研之有物-中央研究院, http://research.sinica.edu.tw/chuang-tien-ming-stm/chuang-tien-ming-stm-20170602-01/, DOI.
[32] 維基百科, https://zh.wikipedia.org/wiki/%E9%87%8F%E5%AD%90%E7%A9%BF%E9%9A%A7%E6%95%88%E6%87%89, DOI (2017).
[33] G.J. de Raad, D.M. Bruls, P.M. Koenraad, J.H. Wolter, Interplay between tip-induced band bending and voltage-dependent surface corrugation on GaAs(110) surfaces, Physical Review B, 66 (2002).
[34] R. Dombrowski, C. Steinebach, C. Wittneven, M. Morgenstern, R. Wiesendanger, Tip-induced band bending by scanning tunneling spectroscopy of the states of the tip-induced quantum dot on InAs(110), Physical Review B, 59 (1999) 8043-8048.
[35] 科學online. 掃描式穿隧電子顯微鏡, http://highscope.ch.ntu.edu.tw/wordpress/?p=22563, DOI.
[36] Onmicron, The VT SPM User's Guide, 2000.
[37] 國科會精儀中心, 真空技術與應用, DOI.
[38]輔仁大學, Mass Spectrometry.
http://www.excellence.fju.edu.tw/plan/2.1.1.c/content05/html/14.htm.
[39]Alcatel, User's manual, High Vacuum Technology, 1998.
[40] Yuan, L., et al., A reliable way of mechanical exfoliation of large scale two dimensional materials with high quality. AIP Advances, 2016. 6(12): p. 125201.
[41] Novoselov, K.S. and A.H. Castro Neto, Two-dimensional crystals-based heterostructures: materials with tailored properties. Physica Scripta, 2012. T146: p. 014006.
[42] Giessibl, Franz J. "Atomic resolution of the silicon (111)-(7x7) surface by atomic force microscopy." Science 267.5194 (1995): 68-71.
[43]CJULIAN CHEN(1993):Introduction to Scanning Tunneling Microscopy.New York, Oxford
[44] Edelberg, D., et al. "Hundredfold enhancement of light emission via defect control in monolayer transition-metal dichalcogenides." arXiv preprint arXiv:1805.00127 (2018).
[45]Roy, Anupam, et al. "Structural and electrical properties of MoTe2 and MoSe2 grown by molecular beam epitaxy." ACS applied materials & interfaces 8.11 (2016): 7396-7402.
[46]陳福祥, 過渡金屬二硫族化物二維材料的掃描穿隧電子顯微鏡(STM)及掃描穿隧電子能譜(STS)研究. 大專生科技部計畫,(2018)
[47]Barja, Sara, et al. "Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides." Nature communications 10.1 (2019): 1-8.
[48]Liu, Xiaolong, et al. "Point defects and grain boundaries in rotationally commensurate MoS2 on epitaxial graphene." The Journal of Physical Chemistry C 120.37 (2016): 20798-20805.