簡易檢索 / 詳目顯示

研究生: 林羿彣
Lin, Yi-Wun
論文名稱: 運動性肌肉損傷後增補牛奶對下肢運動表現之影響
The effect of milk supplementation after exercise-induced muscle damage on the performance of lower limbs
指導教授: 鄭景峰
Cheng, Ching-Feng
口試委員: 郭堉圻
Kuo, Yu-Chi
周峻忠
Chou, Chun-Chung
鄭景峰
Cheng, Ching-Feng
口試日期: 2023/05/03
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 74
中文關鍵詞: 敏捷延遲性肌肉痠痛營養增補力量表現運動飲料
英文關鍵詞: agility, delayed onset muscle soreness, nutrition supplement, power performance, sports drinks
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202400172
論文種類: 學術論文
相關次數: 點閱:164下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:探討在 運動 性 肌肉損傷 (exercise-induced muscle damage, EIMD) 後,增補牛奶 對隨後 下肢 運動表現 與肌肉損傷 之影響。 方法 :以 24名 女性團體項目選手 (足球 7人、籃球 17人 ) 為受試對象 。所有受試者需 進行 5組 10次120%一次最大反覆 (one repetition maximum, 1RM),和 2組 10次 100%1RM離心性 腿部推蹬 ,以誘發 EIMD,並於 EIMD後, 以獨立樣本、配對分組 方式接受 606 ml的 牛奶 (MILK) 或 水 (CON) 的增補 。在 EIMD前、及 EIMD後的立即 、 4小時、 24小時、 48小時進行肌肉損傷指標測驗,包含肌酸激酶 (creatine kinase, CK)、肌紅蛋白 (myoglobin, Mb)、 自覺恢復量表(perceived recovery scale, PRS)、 疼痛 視覺類比量表 (visual analogue scale, VAS)、大腿圍, 以 及運動表現指標測驗,包含 下蹲跳 (counter movement jump, CMJ)、大腿中段等長上拉(isometric mid-thigh pull, IMTP)、 T型 敏捷測驗 與 20 m衝 刺 測驗,以 評估 EIMD後,生理與 運動表現 之 恢復。 結果 牛奶組血 液中 的 Mb變化量於損傷後 (MILK vs. CON, 161.9 ± 47.6 vs. 204.3 ± 48.4%, p < .05),與恢復期 4小時 (MILK vs. CON, 169.3 ± 55.2 vs. 293.0 ± 180.2%, p < .05) 均顯著低於控制組;控制組 的 PRS變化量於恢復期第一天 (p < .05) 與第二天 (p < .05) 仍顯著低於損傷前,而牛奶組已恢復至損傷前 。不過,運動表現指標在兩組間均未達顯著 差異。 結論於運動性肌肉損傷後增補牛奶,可能可以減緩肌肉損傷程度,但無法改善 下肢無氧動力運動表現之恢復。

    Purpose: To investigate the effect of milk supplementation after exercise-induced muscle damage (EIMD) on the subsequent lower limbs performance and recovery from muscle damage. Methods: Twenty-four female team-sport players (age: 20.8 ± 1.3 years; soccer, n = 7; basketball, n = 17) were recruited. All participants were required to perform eccentric leg press exercise of 5 sets of 10 repetitions at 120% of one repetition maximum (1RM) and 2 sets of 10 repetitions at 100%1RM to induce an EIMD. After EIMD, participants were assigned to either milk (606 ml) or water supplement group in pair-matched design. The muscle damage indicators, included creatine kinase (CK), myoglobin (Mb), perceived recovery scale (PRS), visual analog scale (VAS), and limb girth, were tested before, immediately after, 4, 24 and 48 hours after EIMD. Performance tests, included counter movement jump (CMJ), isometric mid-thigh pull (IMTP), agility T-test, and 20 m sprint test, were also conducted for evaluating the recovery of exercise performance before and after an EIMD. Results: The changes in Mb in the milk group at immediately after (MILK vs. CON, 161.9 ± 47.6 vs. 204.3 ± 48.4%, p < .05) and 4 hours after EIMD (MILK vs. CON, 169.3 ± 55.2 vs. 293.0 ± 180.2%, p < .05) were significantly lower than those in the control group. The changes in PRS of the control group remain significantly lower than the baseline value on the first (p < .05) and second day (p < .05) after EIMD, while the milk group has returned to baseline. However, no significant differences were found between the groups in the exercise performances. Conclusion: Milk supplementation after EIMD may reduce the magnitude of muscle damage. However, it might not improve the recovery of anaerobic power performance.

    中文摘要 i 英文摘要 ii 目次 iii 表次 v 圖次 v 第壹章 緒論 1 第一節 前言 1 第二節 研究重要性 3 第三節 研究目的 3 第四節 研究假設 4 第五節 研究範圍與限制 4 第六節 名詞操作性定義 5 第貳章 文獻探討 6 第一節 運動性肌肉損傷之介紹 6 第二節 牛奶之成分介紹 7 第三節 牛奶與運動性肌肉損傷改善 8 第四節 運動性肌肉損傷之性別差異 13 第五節 本章總結 15 第參章 研究方法 16 第一節 研究對象 16 第二節 實驗流程設計 17 第三節 實驗日期與地點 19 第四節 實驗方法與步驟 19 第五節 資料處理與統計分析 26 第肆章 結果 27 第一節 受試者基本資料與飲食記錄 27 第二節 增補牛奶對肌肉損傷指標之影響 28 第三節 增補牛奶對運動表現測驗之影響 35 第伍章 討論 47 第一節 增補牛奶對肌肉損傷指標之影響 47 第二節 增補牛奶對運動表現測驗之影響 50 第三節 結論與建議 54 參考文獻 55 附錄ㄧ 健康情況調查表 65 附錄二 受試者須知 66 附錄三 受試者自願同意書 67 附錄四 經前症候群問卷表 68 附錄五 實驗處理流程記錄表 69

    方瑞霞 (2010)。不同月經週期與運動強度對能量消耗的影響 (碩士論文)。國立臺灣師範大學,臺北市。https://hdl.handle.net/11296/3pma25
    陳忠慶 (2004)。運動引起肌肉損傷的原因之探討。運動生理暨體能學報,1,19-32。doi:10.6127/JEPF.2004.01.03
    Ahtiainen, J. P., & Häkkinen, K. (2009). Strength athletes are capable to produce greater muscle activation and neural fatigue during high-intensity resistance exercise than nonathletes. Journal of Strength and Conditioning Research, 23(4), 1129-1134. doi:10.1519/JSC.0b013e3181aa1b72
    Alcantara, J., Sanchez-Delgado, G., Martinez-Tellez, B., Labayen, I., & Ruiz, J. R. (2019). Impact of cow's milk intake on exercise performance and recovery of muscle function: A systematic review. Journal of the International Society of Sports Nutrition, 16(1), 22. https://doi.org/10.1186/s12970-019-0288-5
    Amiri, M., Ghiasvand, R., Kaviani, M., Forbes, S. C., & Salehi-Abargouei, A. (2019). Chocolate milk for recovery from exercise: A systematic review and meta-analysis of controlled clinical trials. European Journal of Clinical Nutrition, 73(6), 835-849. doi:10.1038/s41430-018-0187-x
    Andersen, L. L., Andersen, J. L., Zebis, M. K., & Aagaard, P. (2010). Early and late rate of force development: differential adaptive responses to resistance training? Scandinavian Journal of Medicine & Science in Sports, 20(1), e162-e169. doi: 10.1111/j.1600-0838.2009.00933.x
    Assumpção Cde, O., Lima, L. C., Oliveira, F. B., Greco, C. C., & Denadai, B. S. (2013). Exercise-induced muscle damage and running economy in humans. Scientific World Journal, 2013, 189149. doi:10.1155/2013/189149
    Baker, D., Wilson, G., & Carlyon, B. (1994). Generality versus specificity: A comparison of dynamic and isometric measures of strength and speed-strength. European Journal of Applied Physiology and Occupational Physiology, 68(4), 350-355. doi:10.1007/BF00571456
    Bellar, D., LeBlanc, N. R., Murphy, K., Moody, K. M., & Buquet, G. (2016). The impact of chocolate goat's and cow's milk on postresistance exercise endocrine responses and isometric mid-thigh pull performance. Journal of Dietary Supplements, 13(5), 560-569. doi:10.3109/19390211.2015.1124164
    Biolo, G., & Wolfe, R. R. (1993). Insulin action on protein metabolism. Baillière's Clinical Endocrinology and Metabolism, 7(4), 989-1005. doi:10.1016/s0950-351x(05)80242-3
    Bishop, P. A., Jones, E., & Woods, A. K. (2008). Recovery from training: A brief review. Journal of Strength and Conditioning Research, 22(3), 1015-1024. doi:10.1519/JSC.0b013e31816eb518
    Børsheim, E., Cree, M. G., Tipton, K. D., Elliott, T. A., Aarsland, A., & Wolfe, R. R. (2004). Effect of carbohydrate intake on net muscle protein synthesis during recovery from resistance exercise. Journal of Applied Physiology, 96(2), 674-678. doi:10.1152/japplphysiol.00333.2003
    Born, K. A., Dooley, E. E., Cheshire, P. A., McGill, L. E., Cosgrove, J. M., Ivy, J. L., & Bartholomew, J. B. (2019). Chocolate milk versus carbohydrate supplements in adolescent athletes: A field based study. Journal of the International Society of Sports Nutrition, 16(1), 6. doi:10.1186/s12970-019-0272-0
    Byrne, C., Twist, C., & Eston, R. (2004). Neuromuscular function after exercise-induced muscle damage: theoretical and applied implications. Sports Medicine, 34(1), 49-69. doi:10.2165/00007256-200434010-00005
    Byrne, C., & Eston, R. (2002a). Maximal-intensity isometric and dynamic exercise performance after eccentric muscle actions. Journal of Sports Sciences, 20(12), 951-959. doi:10.1080/026404102321011706
    Byrne, C., & Eston, R. (2002b). The effect of exercise-induced muscle damage on isometric and dynamic knee extensor strength and vertical jump performance. Journal of Sports Sciences, 20(5), 417-425. doi:10.1080/026404102317366672
    Cockburn, E., Bell, P. G., & Stevenson, E. (2013). Effect of milk on team sport performance after exercise-induced muscle damage. Medicine and Science in Sports and Exercise, 45(8), 1585-1592. doi:10.1249/MSS.0b013e31828b7dd0
    Cockburn, E., Hayes, P. R., French, D. N., Stevenson, E., & St Clair Gibson, A. (2008). Acute milk-based protein-CHO supplementation attenuates exercise-induced muscle damage. Physiologie Appliquee, Nutrition et Metabolisme, 33(4), 775-783. doi:10.1139/h08-057
    Cockburn, E., Robson-Ansley, P., Hayes, P. R., & Stevenson, E. (2012). Effect of volume of milk consumed on the attenuation of exercise-induced muscle damage. European Journal of Applied Physiology, 112(9), 3187-3194. doi:10.1007/s00421-011-2288-2
    Cockburn, E., Stevenson, E., Hayes, P. R., Robson-Ansley, P., & Howatson, G. (2010). Effect of milk-based carbohydrate-protein supplement timing on the attenuation of exercise-induced muscle damage. Physiologie Appliquee, Nutrition et Metabolisme, 35(3), 270-277. doi:10.1139/h10-017
    Cooke, M. B., Rybalka, E., Stathis, C. G., Cribb, P. J., & Hayes, A. (2010). Whey protein isolate attenuates strength decline after eccentrically-induced muscle damage in healthy individuals. Journal of the International Society of Sports Nutrition, 7, 30. doi:10.1186/1550-2783-7-30
    Costello, J. T., Bieuzen, F., & Bleakley, C. M. (2014). Where are all the female participants in sports and exercise medicine research? European Journal of Sport Science, 14(8), 847-851. doi:10.1080/17461391.2014.911354
    Day, M. L., McGuigan, M. R., Brice, G., & Foster, C. (2004). Monitoring exercise intensity during resistance training using the session RPE scale. Journal of Strength and Conditioning Research, 18(2), 353-358. doi: 10.1519/R-13113.1
    da Silva Novaes, J., da Silva Telles, L. G., Monteiro, E. R., da Silva Araujo, G., Vingren, J. L., Silva Panza, P., Vianna, J. M. (2021). Ischemic preconditioning improves resistance training session performance. Journal of Strength and Conditioning Research, 35(11), 2993-2998. doi:10.1519/jsc.0000000000003532
    Ebbeling, C. B., & Clarkson, P. M. (1989). Exercise-induced muscle damage and adaptation. Sports Medicine, 7(4), 207-234. doi:10.2165/00007256-198907040-00001
    Enoka R. M. (1996). Eccentric contractions require unique activation strategies by the nervous system. Journal of Applied Physiology, 81(6), 2339-2346. doi:10.1152/jappl.1996.81.6.2339
    Ferguson-Stegall, L., McCleave, E. L., Ding, Z., Doerner, P. G., Wang, B., Liao, Y. H., ... Ivy, J. L. (2011). Postexercise carbohydrate-protein supplementation improves subsequent exercise performance and intracellular signaling for protein synthesis. Journal of Strength and Conditioning Research, 25(5), 1210-1224. doi:10.1519/JSC.0b013e318212db21
    Gee, T. I., Woolrich, T. J., & Smith, M. F. (2019). Effectiveness of whey protein hydrolysate and milk-based formulated drinks on recovery of strength and power following acute resistance exercise. Journal of Human Kinetics, 68, 193-202. doi:10.2478/hukin-2019-0066
    Gilson, S. F., Saunders, M. J., Moran, C. W., Moore, R. W., Womack, C. J., & Todd, M. K. (2010). Effects of chocolate milk consumption on markers of muscle recovery following soccer training: A randomized cross-over study. Journal of the International Society of Sports Nutrition, 7, 19. doi:10.1186/1550-2783-7-19
    Hausswirth, C., & Le Meur, Y. (2011). Physiological and nutritional aspects of post-exercise recovery: Specific recommendations for female athletes. Sports Medicine, 41(10), 861-882. doi:10.2165/11593180-000000000-00000
    Highton, J., & Twist, C. (2009). The effects of exercise-induced muscle damage on agility and sprint running performance. Journal of Exercise Science and Fitness, 7, 24-30. doi:10.1016/S1728-869X(09)60004-6
    Howatson, G., & Milak, A. (2009). Exercise-induced muscle damage following a bout of sport specific repeated sprints. Journal of Strength and Conditioning Research, 23(8), 2419-2424. doi:10.1519/JSC.0b013e3181bac52e
    Hotfiel, T., Freiwald, J., Hoppe, M. W., Lutter, C., Forst, R., Grim, C., Bloch, W., Hüttel, M., & Heiss, R. (2018). Advances in delayed-onset muscle soreness (DOMS): Part i: Pathogenesis and diagnostics. delayed onset muscle soreness-teil i: pathogenese und diagnostik. Sportverletzung Sportschaden, 32(4), 243-250. doi: 10.1055/a-0753-1884
    Hortobágyi, T., Lambert, N. J., & Kroll, W. P. (1991). Voluntary and reflex responses to fatigue with stretch-shortening exercise. Canadian Journal of Sport Sciences, 16(2), 142-150.
    James, L. J., Clayton, D., & Evans, G. H. (2011). Effect of milk protein addition to a carbohydrate-electrolyte rehydration solution ingested after exercise in the heat. British Journal of Nutrition, 105(3), 393-399. doi:10.1017/s0007114510003545
    James, L. J., Stevenson, E. J., Rumbold, P. L. S., & Hulston, C. J. (2019). Cow's milk as a post-exercise recovery drink: Implications for performance and health. European Journal of Sport Science, 19(1), 40-48. doi:10.1080/17461391.2018.1534989
    Jonge, X. A. (2003). Effects of the menstrual cycle on exercise performance. Sports Medicine, 33(11), 833-851. doi:10.2165/00007256-200333110-00004
    Karp, J. R., Johnston, J. D., Tecklenburg, S., Mickleborough, T. D., Fly, A. D., & Stager, J. M. (2006). Chocolate milk as a post-exercise recovery aid. International Journal of Sport Nutrition and Exercise Metabolism, 16(1), 78-91. doi:10.1123/ijsnem.16.1.78
    Kendall, B., & Eston, R. (2002). Exercise-induced muscle damage and the potential protective role of estrogen. Sports Medicine, 32(2), 103-123. doi:10.2165/00007256-200232020-00003
    Kirk, B., Mitchell, J., Jackson, M., Amirabdollahian, F., Alizadehkhaiyat, O., & Clifford, T. (2017). A2 milk enhances dynamic muscle function following repeated sprint exercise, a possible ergogenic aid for A1-protein intolerant athletes? Nutrients, 9(2), 94. doi:10.3390/nu9020094
    Koch, A. J., Pereira, R., & Machado, M. (2014). The creatine kinase response to resistance exercise. Journal of Musculoskeletal and Neuronal Interactions, 14(1), 68-77.
    Lamb G. D. (2009). Mechanisms of excitation-contraction uncoupling relevant to activity-induced muscle fatigue. Applied Physiology, Nutrition, and Metabolism, 34(3), 368-372. doi:10.1139/H09-032
    Li, L., Sun, F., Huang, W. Y., & Wong, S. H. S. (2018). Effects of whey protein in carbohydrate-electrolyte drinks on post-exercise rehydration. European Journal of Sport Science, 18, 685-694. doi:10.1080/17461391.2018.144249
    Lunn, W. R., Pasiakos, S. M., Colletto, M. R., Karfonta, K. E., Carbone, J. W., Anderson, J. M., & Rodriguez, N. R. (2012). Chocolate milk and endurance exercise recovery: Protein balance, glycogen, and performance. Medicine and Science in Sports and Exercise, 44(4), 682-691. doi:10.1249/MSS.0b013e3182364162
    Macaluso, F., Isaacs, A. W., & Myburgh, K. H. (2012). Preferential type II muscle fiber damage from plyometric exercise. Journal of Athletic Training, 47(4), 414-420. doi:10.4085/1062-6050-47.4.13
    Macgregor, L. J., & Hunter, A. M. (2018). High-threshold motor unit firing reflects force recovery following a bout of damaging eccentric exercise. PloS one, 13(4), e0195051. doi: 10.1371/journal.pone.0195051
    Macnaughton, L. S., Wardle, S. L., Witard, O. C., McGlory, C., Hamilton, D. L., Jeromson, S., ... Tipton, K. D. (2016). The response of muscle protein synthesis following whole-body resistance exercise is greater following 40 g than 20 g of ingested whey protein. Physiological Reports, 4(15) e12893. doi:10.14814/phy2.12893
    Mair, J. (1999). Tissue release of cardiac markers: From physiology to clinical applications. Clinical Chemistry and Laboratory Medicine, 37(11-12), 1077-1084. doi:10.1515/CCLM.1999.157
    Markus, I., Constantini, K., Hoffman, J. R., Bartolomei, S., & Gepner, Y. (2021). Exercise-induced muscle damage: Mechanism, assessment and nutritional factors to accelerate recovery. European Journal of Applied Physiology, 121(4), 969-992. doi:10.1007/s00421-020-04566-4
    Miller, S. L., Tipton, K. D., Chinkes, D. L., Wolf, S. E., & Wolfe, R. R. (2003). Independent and combined effects of amino acids and glucose after resistance exercise. Medicine and Science in Sports and Exercise, 35(3), 449-455. doi:10.1249/01.Mss.0000053910.63105.45
    Minahan, C., Joyce, S., Bulmer, A. C., Cronin, N., & Sabapathy, S. (2015). The influence of estradiol on muscle damage and leg strength after intense eccentric exercise. European Journal of Applied Physiology, 115(7), 1493-1500. doi: 10.1007/s00421-015-3133-
    Owens, D. J., Twist, C., Cobley, J. N., Howatson, G., & Close, G. L. (2019). Exercise-induced muscle damage: What is it, what causes it and what are the nutritional solutions? European Journal of Sport Science, 19(1), 71-85. doi:10.1080/17461391.2018.1505957
    Pasiakos, S. M., Lieberman, H. R., & McLellan, T. M. (2014). Effects of protein supplements on muscle damage, soreness and recovery of muscle function and physical performance: A systematic review. Sports Medicine, 44(5), 655-670. doi: 10.1007/s40279-013-0137-7
    Peake, J., Nosaka, K., & Suzuki, K. (2005). Characterization of inflammatory responses to eccentric exercise in humans. Exercise Immunology Review, 11, 64-85.
    Pellegrino, A., Tiidus, P. M., & Vandenboom, R. (2022). Mechanisms of estrogen influence on skeletal muscle: Mass, regeneration, and mitochondrial function. Sports Medicine, 52(12), 2853-2869. doi: 10.1007/s40279-022-01733-9
    Piper, T., Furman, S., Smith, T.J., & Waller, M. (2021). Establishing normative data for 10RM strength scores in college-aged males. International Journal of Strength and Conditioning, 1(1). doi:10.47206/ijsc.v1i1.40
    Poulios, A., Georgakouli, K., Draganidis, D., Deli, C. K., Tsimeas, P. D., Chatzinikolaou, A., ... Jamurtas, A. Z. (2019). Protein-based supplementation to enhance recovery in team sports: What is the evidence? Journal of Sports Science and Medicine, 18(3), 523-536.
    Pokora, I., Kempa, K., Chrapusta, S. J., & Langfort, J. (2014). Effects of downhill and uphill exercises of equivalent submaximal intensities on selected blood cytokine levels and blood creatine kinase activity. Biology of Sport, 31(3), 173-178. doi:10.5604/20831862.1111434
    Pritchett, K., & Pritchett, R. (2012). Chocolate milk: A post-exercise recovery beverage for endurance sports. Medicine and Sport Science, 59, 127-134. doi:10.1159/000341954
    Pritchett, K., Pritchett, R., & Bishop, P. (2011). Nutritional strategies for post-exercise recovery: A review. South African Sports Medicine Association, 23(1), 20-25. doi:10.17159/2078-516X/2011/v23i1a370
    Pritchett, K., Pritchett, R., Green, J., Katica, C., Combs, B., Eldridge, M., & Bishop, P. (2011). Comparisons of post-exercise chocolate milk and a commercial recovery beverage following cycling training on recovery and performance. Journal of Exercise Physiology Online, 14, 29-39.
    Proske, U., & Allen, T. J. (2005). Damage to skeletal muscle from eccentric exercise. Exercise And Sport Sciences Reviews, 33(2), 98-104. doi:10.1097/00003677-200504000-00007
    Proske, U., Weerakkody, N. S., Percival, P., Morgan, D. L., Gregory, J. E., & Canny, B. J. (2003). Force‐matching errors after eccentric exercise attributed to muscle soreness. Clinical and Experimental Pharmacology and Physiology, 30(8), 576-579.
    Rankin, P., Landy, A., Stevenson, E., & Cockburn, E. (2018). Milk: An effective recovery drink for female athletes. Nutrients, 10(2) , 228. doi:10.3390/nu10020228
    Rankin, P., Stevenson, E., & Cockburn, E. (2015). The effect of milk on the attenuation of exercise-induced muscle damage in males and females. European Journal of Applied Physiology, 115(6), 1245-1261. doi:10.1007/s00421-015-3121-0
    Roy, B. D. (2008). Milk: The new sports drink? A review. Journal of the International Society of Sports Nutrition, 5(1), 1-6. doi:10.1186/1550-2783-5-15
    Roy, B. D., Tarnopolsky, M. A., MacDougall, J. D., Fowles, J., & Yarasheski, K. E. (1997). Effect of glucose supplement timing on protein metabolism after resistance training. Journal of Applied Physiology, 82(6), 1882-1888. doi:10.1152/jappl.1997.82.6.1882
    Sayers, S. P., & Clarkson, P. M. (2003). Short-term immobilization after eccentric exercise. Part II: Creatine kinase and myoglobin. Medicine and Science in Sports and Exercise, 35(5), 762-768. doi:10.1249/01.MSS.0000064933.43824.ED
    Shirreffs, S. M., Watson, P., & Maughan, R. J. (2007). Milk as an effective post-exercise rehydration drink. The British Journal of Nutrition, 98(1), 173-180. doi:10.1017/s0007114507695543
    Spaccarotella, K. J., & Andzel, W. D. (2011a). Building a beverage for recovery from endurance activity: A review. Journal of Strength and Conditioning Research, 25(11), 3198-3204. doi:10.1519/JSC.0b013e318212e52f
    Spaccarotella, K. J., & Andzel, W. D. (2011b). The effects of low fat chocolate milk on postexercise recovery in collegiate athletes. Journal of Strength and Conditioning Research, 25(12), 3456-3460. doi:10.1519/JSC.0b013e3182163071
    Stupka, N., Lowther, S., Chorneyko, K., Bourgeois, J. M., Hogben, C., & Tarnopolsky, M. A. (2000). Gender differences in muscle inflammation after eccentric exercise. Journal of Applied Physiology, 89(6), 2325-2332. doi:10.1152/jappl.2000.89.6.2325
    Tee, J. C., Bosch, A. N., & Lambert, M. I. (2007). Metabolic consequences of exercise-induced muscle damage. Sports Medicine, 37(10), 827-836. doi: 10.2165/00007256-200737100-00001
    Thomas, K., Morris, P., & Stevenson, E. (2009). Improved endurance capacity following chocolate milk consumption compared with 2 commercially available sport drinks. Applied Physiology, Nutrition, and Metabolism, 34, 78-82. doi:10.1139/H08-137
    Tipton, K. D., Rasmussen, B. B., Miller, S. L., Wolf, S. E., Owens-Stovall, S. K., Petrini, B. E., & Wolfe, R. R. (2001). Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. American Journal of Physiology. Endocrinology and Metabolism, 281(2), E197-206. doi:10.1152/ajpendo.2001.281.2.E197
    Twist, C., & Eston, R. (2005). The effects of exercise-induced muscle damage on maximal intensity intermittent exercise performance. European Journal of Applied Physiology, 94(5), 652-658. doi:10.1007/s00421-005-1357-9
    Vaile, J., Halson, S., Gill, N., & Dawson, B. (2008). Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. European Journal of Applied Physiology, 102(4), 447-455. doi:10.1007/s00421-007-0605-6
    Wadey, C., Perkins, I., & Potter, J. A. (2018). Chocolate milk improves post-exercise recovery in tennis players. Reviews Press, 2(1), 77-83.
    Warren, G. L., Ingalls, C. P., Lowe, D. A., & Armstrong, R. B.(2001). Excitation-contraction uncoupling: Major role in contraction-induced muscle injury. Exercise and Sports Science Reviews,29,82-87. doi:10.1097/00003677-200104000-00008
    Webb, R., Hughes, M. G., Thomas, A. W., & Morris, K. (2017). The ability of exercise-associated oxidative stress to trigger redox-sensitive signalling responses. Antioxidants, 6(3), 63. doi:10.3390/antiox6030063.
    Wojcik, J. R., Walber-Rankin, J., Smith, L. L., & Gwazdauskas, F. C. (2001). Comparison of carbohydrate and milk-based beverages on muscle damage and glycogen following exercise. International Journal of Sport Nutrition and Exercise Metabolism, 11(4), 406-419. doi:10.1123/ijsnem.11.4.406

    下載圖示
    QR CODE