簡易檢索 / 詳目顯示

研究生: 林弘霖
Lin, Hung-Lin
論文名稱: 摻雜釤元素的釔鐵石榴石之磁性探討
Discussion on the magnetic properties of yttrium iron garnet doped with samarium
指導教授: 駱芳鈺
Lo, Fang-Yuh
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 73
中文關鍵詞: 釔鐵石榴石脈衝雷射蒸鍍法法拉第磁光效應
英文關鍵詞: yttrium iron garnet, Samarium, pulsed laser deposition, magneto-optic Faraday effect
DOI URL: http://doi.org/10.6345/NTNU202001249
論文種類: 學術論文
相關次數: 點閱:175下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文探討由脈衝雷射蒸鍍法在c平面藍寶石基板上所製備知釔釤鐵石榴石薄膜的晶體結構,表面形貌及磁光特性。薄膜的厚度為100 nm,製備條件為氧壓 3×〖10〗^(-7) mbar,基板溫度為525 ℃,雷射在靶材上的單位面積能量3.5 J/cm2,並在大氣下用高溫爐以1050 ℃進行4小時的熱退火。
X光繞射光譜得知大部分薄膜為多晶結構,而在取代量為x = 2.0和2.5時則是非晶結構。拉曼散射光譜證實所有薄膜維持YIG的立方對稱性。分析取得的晶格常數在12.3046~12.4669 Å之間,僅x = 1.5的薄膜其晶格常數小於塊材的YIG數值。
薄膜的表面形貌以圓形為主,部分取代的薄膜樣品表面的顆粒較小也較一致,粗糙度也較小。所有薄膜樣品的方均根粗糙度在6.84~23.08 nm之間,和取代量無明顯關係。
薄膜樣品在340~560 nm的波長範為可以觀察到磁滯曲線,代表薄膜具有磁的垂直異向性。其矯頑場在5~280 mT之間,飽和法拉第旋轉角在1.9×〖10〗^(-2)~0.747 mrad之間。兩者和取代量的關係是到取代量從x=0.0開始變大,x = 1.5~2.0達到最大後,到x = 3.0之間變小。

In this thesis, we report the crystal structure, surface morphology, and magneto-optical properties of Sm doped yttrium iron garnet thin films grown by pulsed laser deposition on c-sapphire substrates. The deposition are carried out in the oxygen pressure at 3×〖10〗^(-1) mbar, substrate temperature at 525 ℃, and at the laser energy density of 3.5 J/cm2. After deposition, thin films are annealed at 1050 ℃ for 4 hours in atmosphere.
X-ray diffraction (XRD) spectroscopy shows that the films are of polycrystalline structure with the exception of x = 2.0 and 2.5, where they are amorphous structure. Raman scattering spectroscopy confirms that all films maintain the cubic symmetry of yttrium iron garnet (YIG). The lattice constant of the thin films obtained from XRD are between 12.3046 and 12.4669 Å. Only the film with x = 1.5 has a lattice constant smaller than the bulk value of YIG.
The surface morphology of the films is mainly in circular shape. The particle size on the surface of the partially substituted thin film samples is smaller and more consistent, and the roughness is also smaller. The root-mean-square roughness of all thin film samples is between 6.84 nm and 23.08 nm, which has no obvious dependence of the amount of substitution.
Hysteresis loops are observed with magneto-optical Faraday effect in the wavelengths between 340 and 560 nm, which represents that the thin films have magnetic perpendicular anisotropy. The coercive fields are between 5 and 280 mT, and the saturation Faraday rotation angles are between 0.019 and 0.747 mrad. Both the coercive field and saturation Faraday rotation angle increase with Sm content until it reaches x = 1.5, and then decreases after x = 2.0.

目錄 摘要 I Abstract II Chapter 1 緒論 1 Chapter 2 背景知識 2 2.1 釔鐵石榴石(Y3Fe5O12)、釤(Samarium, Sm)、藍寶石基板(Sapphire) 2 2.1.1 釔鐵石榴石(Y3Fe5O12) 2 2.1.2 釤(Samarium, Sm) 4 2.1.3 藍寶石基板(Sapphire) 4 2.2 脈衝雷射鍍膜系統(Pulsed Laser Deposition, PLD) 5 2.3 薄膜厚度輪廓儀(Profilometer, α-step) 7 2.4 X光繞射光譜(X-ray Diffraction ,XRD) 8 2.4.1 X光之產生 8 2.4.2 布拉格繞射定律(Braggs’Law) 9 2.4.3 倒晶格向量(reciprocal lattice) 10 2.5 拉曼光譜分析(Raman spectroscopy) 11 2.6 原子力顯微鏡(Atomic Force Microscope, AFM) 13 2.7 磁性介紹 15 2.7.1 反磁性(diamagnetism) 15 2.7.2 順磁性(paramagnetism) 16 2.7.4 反鐵磁性(Anti-ferromagnetism) 19 2.7.5 亞鐵磁性(ferrimagnetism) 20 2.8 磁光效應 21 2.8.1 法拉第效應(Faraday effect) 21 2.8.2 磁光科爾效應(magneto-optic Kerr effect, MOKE) 22 Chapter 3 實驗過程 25 3.1 鍍膜條件 25 3.2 靶材製作 26 3.3 藍寶石(Sapphire)基板清洗 26 3.4 鍍膜流程 27 3.5 退火流程(Annealing) 28 Chapter 4實驗分析討論 29 4.1 鍍膜速率分析 29 4.2 XRD結果分析 31 4.3 拉曼光譜分析 33 4.4 薄膜表面形貌 36 4.6 法拉第磁光 40 4.7 柯爾磁光 64 Chapter 5 結論 65 參考資料 66 附錄 69

[1] M. A. Popov, I. V. Zavislyak, and G. Srinivasan, “A MAGNETIC FIELD TUNABLE YTTRIUM IRON,” Progress In Electromagnetics Research C, pp. Vol. 25, 145-157, (2012).
[2] Wan Fahmin Faiz Wan Ali, Hasnul Hakimi Jaafar, Mohd Fadzil Ain, Norazharuddin Shah Abdullah & Zainal Arifin Ahmad, “Enhancement of YIG bandwidth efficiency through Ce-doping for dielectric resonator antenna (DRA) applications,” Journal of Materials Science Materials in Electronics, pp. 26, pages504–514, (2015).
[3] Wan Fahmin FaizWan Ali, MohamadariffOthman, Mohd FadzilAin, Norazharuddin Shah Abdullah, Zainal Arifin Ahmad, “From optimization to dielectric resonator antenna (DRA) applicationof YIG: Synthesis approach,” Journal of Alloys and Compounds, pp. Volume 645, Pages 541-552, (2015).
[4] Vincent G.Harris,Anton Geiler,Yajie Chen,Soack Dae Yoon,Mingzhong Wu,Aria Yang,Zhaohui Chen,Peng He,Patanjali V. Parimi,Xu Zuo,Carl E. Patton,Manasori Abe,Olivier Acher,Carmine Vittoria, “Recent advances in processing and applications of microwave ferrites,” Journal of Magnetism and Magnetic Materials, pp. Volume 321, Issue 14, Pages 2035-2047, 2009.
[5] V V Kruglyak, S O Demokritov and D Grundler, “Magnonics,” Journal of Physics D: Applied Physics, pp. Volume 43, Number 26, (2010).
[6] T. S. a. D. Grundler, “Magnonic crystal wave guide with large spin-wave propagation velocity in CoFeB,” Applied Physics Letters, pp. Volume 102, Issue 22,10.1063/1.4809757, (2013).
[7] Benjamin Lenk, Henning Ulrichs, Fabian Garbs, Markus Münzenberg, “The building blocks of magnonics,” Materials Science, pp. Physics Reports 507, 107-136, (2011).
[8] A. Khitun, “Multi-frequency magnonic logic circuits for parallel data processing,” Journal of Applied Physics, pp. Volume 111, Issue 5,10.1063/1.3689011, (2012).
[9] Sergiy Cherepov, Pedram Khalili Amiri, Juan G. Alzate, Kin Wong, Mark Lewis,, “Electric-field-induced spin wave generation using multiferroic magnetoelectric cells,” APPLIED PHYSICS LETTERS, pp. 104, 082403, (2014).
[10] T. Fischer, M. Kewenig, D. A. Bozhko, A. A. Serga, I. I. Syvorotka, F. Ciubotaru, C. Adelmann, B. Hillebrands, and A. V. Chumak, “Experimental prototype of a spin-wave majority gate,” Applied Physics Letters, pp. 110, 152401, (2017).
[11] M Krawczyk,D Grundler, “Review and prospects of magnonic crystals and devices with reprogrammable band structure,” Journal of Physics: Condensed Matter, pp. Volume 26,, (2014).
[12] Andrii V. Chumak, Alexander A. Serga & Burkard Hillebrands , “Magnon transistor for all-magnon data processing,” Nature Communications , pp. volume 5, Article number: 4700, (2014).
[13] Haiming Yu, O. d’ Allivy Kelly, V. Cros, R. Bernard, P. Bortolotti, A. Anane, F. Brandl, F. Heimbach & D. Grundler , “Approaching soft X-ray wavelengths in nanomagnet-based microwave technology,” Nature Communications, pp. volume 7, 11255, (2016).
[14] Christoph Hauser, Tim Richter, Nico Homonnay, Christian Eisenschmidt, Mohammad Qaid, Hakan Deniz, Dietrich Hesse, Maciej Sawicki, Stefan G. Ebbinghaus & Georg Schmidt , “Yttrium Iron Garnet Thin Films with Very Low Damping Obtained by Recrystallization of Amorphous,” Scientific Reports, pp. volume 6, Article number: 20827 , (2016).
[15] Biswanath Bhoi, Bosung Kim, Yongsub Kim, Min-Kwan Kim, Jae-Hyeok Lee, and Sang-Koog Kim, “Stress-induced magnetic properties of PLD-grown high-quality ultrathin YIG,” Journal of Applied Physics , pp. 123, 203902, (2018).
[16] Makiyyu Abdullahi Musa,Raba'ah Syahidah Azis,Nurul Huda Osman,Jumiah Hassan,Tasiu Zangina, “Structure and magnetic properties of yttrium–iron–garnet thin films,” Results in Physics, pp. Volume 7, Pages 1135-1142, (2017).
[17] A. Sposito, “Pulsed laser deposition of thin film magneto-optic materials and lasing waveguides,” University of Southampton, Physical Sciences and Engineering, Doctoral Thesis, p. 259pp, (2014).
[18] 郭豐瑋, “釔鐵石榴石的MCD研究”.
[19] “Pulsed laser deposition of thin film magneto-optic materials and lasing waveguides”.
[20] “化學週期表(https://images-of-elements.com/),” (2019).
[21] “kyocera材料供應商(https://americas.kyocera.com/products/)”.
[22] 何焱騰 ; 馬俊皓 ; 張翼, “脈衝雷射鍍膜技術在二維材料之應用,” 奈米通訊 , pp. 22:1頁20-27, (2015).
[23] ma-tek, “薄膜厚度輪廓測量儀 (α-step)”.
[24] “Powder Diffraction on the Web(http://img.chem.ucl.ac.uk/)”.
[25] “多功能薄膜X光繞射儀(HRXRD)(http://www.pisc.fcu.edu.tw/?lnk=instrument_detail&iid=10)”.
[26] “bruker(X-ray diffraction)”.
[27] José Francisco Barrón,Leticia Hernández Cruz,Félix Sánchez De Jesús,Ana María Bolarín-Miró, “Vibrational and magnetic properties of YIG ferrite powders,” Journal of Physics: Conference Series, p. Series 1221, (2019).
[28] 陳建淼,洪連輝, “磁性物質,” 科學Online(https://highscope.ch.ntu.edu.tw/wordpress/?p=1629), (2009).
[29] 李聖尉,蔡志申, “磁性物質(Ⅰ)–反磁性、順磁性(Magnetic Material–Ⅰ),” 科學Online(https://highscope.ch.ntu.edu.tw/wordpress/?p=22512), 2011.
[30] “中山大學演示實驗(http://www2.nsysu.edu.tw/physdemo/2012/B4/B4.htm)”.
[31] “磁性物質(Ⅱ)–鐵磁性、反鐵磁性(Magnetic Material–Ⅱ),” 科學Online(https://highscope.ch.ntu.edu.tw/wordpress/?p=22506), 2011.
[32] zh.wikipedia, “法拉第效應”.
[33] “磁性理論與柯爾磁光原理與實驗(http://rportal.lib.ntnu.edu.tw/bitstream/20.500.12235/102630/4/n069441014404.pdf)”.
[34] 蔡志申, “表面磁光科爾效應與超薄膜磁性性質,” 物理雙月刊, pp. 廿五卷五期, 605, (2003).
[35] 蘇書玄,李彥龍,蔡志申, “表面磁光科爾效應系統與 Co/Ir(111)之磁性研究,” 表面磁光科爾效應系統與 Co/Ir(111)之磁性研究 , p. 東海科學第六卷:1−15 , 2004.
[36] 陳建淼,洪連輝, “柯爾磁光效應,” 科學Online(https://highscope.ch.ntu.edu.tw/wordpress/?p=1595), (2009).
[37] Jin-Joo Song, P. B. Klein, R. L. Wadsack, M. Selders, S. Mroczkowski, and R. K. Chang, “Raman-active phonons in aluminum, gallium, and iron garnets*,” OSA Publishing, pp. Volume 63,Issue 9,Page 1135, (1973).
[38] Eduardo Mallmann,Sergio Sombra,Júlio Cesar Góes,P. B. A. Fechine, “Yttrium Iron Garnet: Properties and Applications Review,” Solid State Phenomena, pp. 202:65-96, (2013).
[39] Ravinder Kumar, Z. Hossain, and R. C. Budhania, “Effects of post-deposition annealing on the structure and magnetization of PLD grown,” Journal of Applied Physics, pp. 121, 113901, (2017).
[40] Muhammad Yousaf,Asma Noor,ShuaiXu,Majid NiazAkhtar,BaoyuanWang, “Magnetic characteristics and optical band alignments of rare earth (Sm+3, Nd+3) doped garnet ferrite nanoparticles (NPs),” Ceramics International, pp. Volume 46,Pages 16524-16532, 2020.
[41] M.Yousaf,Majid Niaz Akhtar,Baoyuan Wang,Asma Noor, “Preparations, optical, structural, conductive and magnetic evaluations of RE's (Pr, Y, Gd, Ho, Yb) doped spinel nanoferrites,” Ceramics International, pp. Volume 46, Issue 4, Pages 4280-4288, (2020).
[42] 黃英碩, “掃描探針顯微術的原理及應用,” 科儀新知, p. 第二十六卷第四期 94.2.

下載圖示
QR CODE